Transforming LSA space dimensions into a rubric for an automatic assessment and feedback system

ARTICLE · DECEMBER 2015
DOI: 10.1016/j.ipm.2015.12.002

5 AUTHORS, INCLUDING:

Ricardo Olmos
Universidad Autónoma de Madrid
31 PUBLICATIONS 92 CITATIONS

Guillermo Jorge-Botana
National Distance Education University
20 PUBLICATIONS 57 CITATIONS

Martin Cordero
National Distance Education University
7 PUBLICATIONS 9 CITATIONS

José Antonio León
Universidad Autónoma de Madrid
75 PUBLICATIONS 262 CITATIONS

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
Transforming LSA space dimensions into a rubric for an automatic assessment and feedback system

Abstract

The purpose of this article is to validate, through two empirical studies, a new method for automatic evaluation of written texts, called Inbuilt Rubric, based on the Latent Semantic Analysis (LSA) technique, which constitutes an innovative and distinct turn with respect to LSA application so far. In the first empirical study, evidence of the validity of the method to identify and evaluate the conceptual axes of a text in a sample of 78 summaries by secondary school students is sought. Results show that the proposed method has a significantly higher degree of reliability than classic LSA methods of text evaluation, and displays very high sensitivity to identify which conceptual axes are included or not in each summary. A second study evaluates the method’s capacity to interact and provide feedback about quality in a real online system on a sample of 924 discursive texts written by university students. Results show that students improved the quality of their written texts using this system, and also rated the experience very highly. The final conclusion is that this new method opens a very interesting way regarding the role of automatic assessors in the identification of presence/absence and quality of elaboration of relevant conceptual information in texts written by students with lower time costs than the usual LSA-based methods.

Keywords: LSA, rubric, lexical descriptors, automatic evaluation, summary
1. Introduction

It is a well-known fact that novice writers pay little attention to revision processes. It is also well known that even when revisions are made these are often superficial or mechanic (Graham, 2006; Fitzgerald, 1987). There is also evidence that even university students spend little time on revision processes (Pianko, 1979); in fact, it can be stated that one of the characteristics of more competent writers is spending more time on revision and applying it to a conceptual and structural level (Hayes and Flower, 1986) instead than to superficial text traits (spelling, errors, etc.) which is the common strategy in novice writers. The importance of improving the quality of students’ writing cannot be overstated, and the same can be said about the relevance of revision processes to this purpose. Precisely in order to aid and motivate writers in the process of revision of academic texts, special emphasis has been placed in recent years on the creation of automatic assessors and tutors that provide help in instruction tasks (Foltz, Laham & Landauer, 1999b; Magliano & Graeser, 2012; Foltz, Streeter, Lochbaum, & Landauer, 2013; Shermis, Koch, Page, Keith, & Harrington, 2002). Some of these automated assessors have made use of engines based on Latent Semantic Analysis (LSA) and its ability to identify concepts (Foltz, Gilliam, and Kendall, 2000; Graesser, Wiemer-Hastings, Wiemer-Hastings, Harter, Person, & the Tutoring Research Group, 2000; Kintsch, Caccamise, Franzke, Johnson, & Dooley, 2007). Part of the assessors in this group are aimed at offering ongoing online conceptual feedback when a student delivers a text or changes part of a text already delivered (Franzke, Kintsch, Caccamise, Johnson, & Dooley, 2005). The aim of these assessors is to provide support to the cyclical process by which students enter the summary of a previously-read text. The system provides information about the concepts that are included or not with respect to those which should be included, and the student re-revises his text (reviewing
even the basic text to obtain information). Then the student enters another summary that will usually be based on the first one.

As was previously stated, Latent Semantic Analysis (LSA) is one of the techniques that can identify conceptual information and is widely used for this reason. There is no need to specify the basics and details of this technique, which is thoroughly documented (Deerwester, Dumais, Landauer, Furnas & Harshman, 1990; Landauer & Dumais, 1997). There is extensive documentation too about the educational aspect of this technique (Kakkonen, Sutinen, Timonen, 2005; Haley, Thomas, Petre & De Roeck, 2007; Millis, Magliano, Wiemer-Hastings, Todaro, & McNamara, 2007). However, some essential LSA concepts should be described to understand the logic underlying the methodology proposed in this paper. LSA starts by analyzing an extensive set of documents (the linguistic corpus), where, to begin with, a matrix X of occurrences is generated, with n rows and m columns. The number n of rows corresponds to the number of different terms analyzed in this first step and the number m of columns refers to the number of documents used to train the LSA system. Each cell in X contains the frequency of the term in each document. It is known that this LSA based X matrix does not contain a useful representation of the semantics because, among other things, it has a huge dimensionality, and contains the subjective use made by the authors of the terms. After softening the X matrix by means of a function such as entropy (i.e. Nakov, Popova, & Mateev, 2001) the algebraic technique known as singular value decomposition, which defines the essence of LSA, is applied. This technique yields a US matrix with $n \times k$ dimensions, where k is now a small number of dimensions, usually ranging between 250 and 350. This US matrix is known as a latent semantic space because it contains an efficient representation of the terms in the corpus (i.e. Landauer & Dumais, 1997). The term "latent" is due to the fact that the semantic space has an
eminently abstract nature. The k dimensions that represent terms and texts do not
correspond to discernible concepts or specific episodes with which to label the
dimensions. The k dimensions do not have thus psychological verisimilitude, yet they
have proven very useful to simulate semantic judgments and many tasks involving text
meaning (i.e. evaluation, predication, diagnosis, telephone call routing, etc.) The
concept of semantic space is thus very important, as it is the basis onto which the texts
to be semantically interpreted are projected, and thus is also very important for
educational assessment applications.

Limitations of the current LSA based assessment systems

The way in which texts written by students have been usually assessed and rated
has been to compare the vector representation of those texts in the semantic space with
the vector representation of one or more texts that serve as the standard criterion and
have been written by experts in the discipline (usually teachers). There are various
techniques in this regard, from the simplest ones, based on a single standard summary
(golden summary, see Landauer, Foltz, & Laham, 1998 or more recently Klein, Kyrilov,
& Tokman, 2011), to more complex ones, such as the technique that makes use of a
sample of previously rated standard summaries so that the scale is more plausible from
the point of view of a human judge (grading techniques, see Dronen, Foltz, &
Habermehl, 2014; Kakkonen & Sutinen, 2004; Burstein, Kukich, Wolff, Lu, &
Chodorow, 1998). To the extent that the student's summary approaches a pre-rated
standard summary, it will get the same grade as the standard summary. In any case, in
both techniques and some intermediate ones, a single grade is obtained, which is a
function of the semantic distance between the student's text and those standard criteria.
Dronen et al. (2014) describe the high costs of this type of study and propose methods
for pre-grading to be as efficient as possible.
One of the ways in which these techniques have been implemented to assess student texts has implied providing not only a single grade, but the information of what contents are missing in a summary to reach an acceptable standard as well. This is basically a rubric-based content detection task (see, for instance, Summary Street by Franzke, et al., 2005). This is done in the same way as when giving a single grade, that is, by taking text samples (or partial golden summaries) from the concepts to inform about (e.g. sentences extracted from the book to be read), project them onto the semantic space as a vector, and compare them to the vector that represents the student's text. The feedback for each concept will depend on whether the distance between vectors (those of the students and those of the partial golden summaries) is large or small. Another example is Apex (Dessus & Lemaire, 1999), an interactive learning environment, in which the teacher must identify short passages of the instructional text that contains a key concept and the topic or topics to which each concept belongs. In Magliano and Graesser (2012) it is shown that automatic systems involve the creation of a number of answers (which they call expectations) that represent either the different levels of students, or else concepts, inferences, or usual misconceptions among students. These answers are real language samples. Obviously, the preparation of these instruments (golden summaries, graded summaries or partial golden summaries) is time consuming and requires effort. In particular the elaboration of partial golden summaries involves a more time and complexity, besides problems regarding the quantity and sampling of the text to be collected in order to represent each concept. Moreover, golden summaries, graded summaries and partial golden summaries are all based on what may be considered to be a blind or meaningless vector space, so we will name them a “latent space instruments”, in contrast with the meaning “loaded” vector space instrument we present in this paper, the Inbuilt Rubric.
New challenges around identifying contents with LSA

Along these lines, developing new procedures to go beyond mere measurements of similarity between texts and refine the techniques to capture the basic conceptual axes in a written essay in a nuanced and efficient way is certainly a challenge (see Dronen et al, 2014; Kontostathis & Pottenger, 2006; McNamara, 2011; Magliano & Graesser, 2012 for possible LSA developments).

Facing this challenge, in this paper we propose the use of a new strategy to identify contents by means of a rubric. This is a strategy that has already been described as a general application to provide some of the k dimensions in the semantic space with a meaning imposed a priori (Olmos, Jorge-Botana, León & Escudero, 2014). Briefly put, the strategy of this study is based on choosing descriptors (words) for each of the concepts to be established as a criterion. Once each defined concept has its descriptors, each concept becomes a vector in the semantic space and a change of basis is applied so that words are expressed in a new space with those vector-concepts that are part of the new basis. In order to avoid distorting the distances and positions in the former semantic space, a mathematical technique is used to force orthogonalization once again in a controlled and monitored manner. The final product of this strategy is a new semantic space in which the p first dimensions have the meaning of the concepts that were imposed on them a priori. More specifically, in this paper we propose that those p first dimensions be structured as the main concepts of a rubric aimed at assessment and feedback. This can make the design processes for LSA-based evaluation objects more agile. This method will be called Inbuilt Rubric, by contrast to the classic “latent space instruments” mentioned above. In this paper we will provide a detailed description of the Inbuilt Rubric method, as well as two empirical studies. In the first study, evidence
of the validity of the methodology proposed in a controlled context of evaluation on a sample of 78 summaries by secondary school students is sought. In the second we present a pilot study where the method has been used in a distance education online system, which was accessed by 864 university students taking a third-year course in the Degree in Psychology. Participants use profiles of the automated assessment and feedback in this pilot study will be described, as well as routes for improvement in the quality of written answers.

2. The Inbuilt Rubric assessment method

The general procedure to transform the latent semantic space into a new, meaningful space can be found, together with all the technical details, in Olmos et al. (2014). The description of the Inbuilt Rubric provided here is shorter and simplified, and is accompanied by a specific application: a study of rubric-based evaluation of an expository text, *The strangler tree*, 500 words long, conceived for secondary school students. The method has three distinct steps.

(1) *Rubric*: This is the first step. It involves establishing the evaluation rubric by extracting the basic conceptual axes in the text. The text used describes a type of jungle trees that survive by being parasites on other trees. In order to survive, many plants compete to reach sunlight in an area of thick vegetation. These trees use their roots to first surround their host trees, until they create a thick web around them, and finally strangle them and remain as an independent tree. In a previous paper, six experts (León & Grupo de Investigación Santillana, 2004) discussed the essential conceptual axes of this text. These conceptual axes were four: (1) Suitable contextualization of the text. This involves presenting strangler trees and locating them (jungle areas, tropical areas, etc.) (2) Secondly, it was regarded as essential to describe the process of strangulation
by means of the roots as a gradual process with a lethal ending for the host tree, which is clearly a parasitism strategy. (3) Another conceptual axis of the text is the immediate goal of this parasitism process, namely the struggle and competition to reach sunlight. (4) Finally, the fourth conceptual axis of the text is the ultimate goal described in it: a general strategy of survival in difficult adaptation conditions. So the conceptual axes were four: contextualization of the strangling tree, the process of strangulation and asphyxiation, the immediate goal of the struggle to reach sunlight, and the ultimate goal which is a survival strategy.

(2) **Lexical descriptors:** The second step required by the method is the insertion of the rubric into the LSA. This is done by choosing lexical descriptors that capture the four conceptual axes described in the rubric in the best way possible. Because the next step is transforming the latent semantic space in such a way that the first dimension captures the meaning of the first conceptual axis (strangler trees, humid jungle areas, etc.), the lexical descriptors that best express these ideas must be chosen. The procedure is the same for the second conceptual axis. The lexical descriptors that best describe the conceptual axes must be found. The second step ends when lexical descriptors are chosen for all the conceptual axes imposed in the rubric.

The lexical descriptors chosen for the four conceptual axes were the following: for the first dimension, *strangle, tree, rain-forest, jungle* and *tropical* were chosen. For the second dimension, *to kill, to asphyxiate, to strangle* and *roots* were chosen. For the third dimension, *competition, sun* and *light* were chosen. Finally, for the fourth dimension *adaptation, survival* and *survive* were used.

(3) **Change of basis:** Finally, the third step, once the rubric and its conceptual axes have been completed and once the lexical descriptors that best represent them have been chosen, consists in transforming the meaningless latent semantic space into a new
one whose first \(p \) dimensions signify the conceptual axes of the rubric. Employing the usual LSA notation (Deerwester, et al., 1990) and, as presented in the introduction to the paper, we will call the non-transformed meaningless semantic space, \(\text{US} \), a matrix with \(n \times k \) dimensions, where \(n \) is the number of terms and \(k \) the number of latent dimensions. In our study, the number of dimensions \(k \) with which LSA was trained was 250 and the number of terms \(n \) was 13,389. The term vectors in \(\text{US} \) are referenced in the canonical (standard) basis. The \(k \) dimensions are actually the vectors in the canonical basis, and every \(n \) vector is represented by means of the mentioned basis.

Let us call this new basis \(\beta = \{ V_{\text{AXIS1}}, V_{\text{AXIS2}}, V_{\text{AXIS3}}, V_{\text{AXIS4}}, \ldots \} \), where \(V_k \) is a vector in the new basis. The first \(p \) vectors in \(\beta \) will represent the conceptual axes created in the rubric. In addition, each vector representing each conceptual axis is the vector sum of all its descriptors. For example, \(V_{\text{AXIS1}} = V_{\text{STRANGLE}} + V_{\text{TREE}} + V_{\text{RAIN-FOREST}} + V_{\text{JUNGLE}} + V_{\text{TROPICAL}} \), that is to say, the sum of the vectors that represent the descriptor terms in the original semantic space \(\text{US} \). The new basis must have the same number of vectors, \(k \), as the original canonical basis. To this end, in addition to having the \(p \) vectors in the rubric axes, the remaining vectors in the new basis \(\{ V_{p+1}, \ldots, V_k \} \) are created using vectors from the canonical basis, until a basis of \(k \) vectors is completed. The only requirement is that all vectors must be linearly independent.

Following this procedure, we can express the terms of the matrix \(\text{US} \) in the new basis \(\beta \), obtaining a new term matrix \(\text{C} \) whose \(p \) first dimensions are “meaning loaded” (as meaningful as the vectors of the axes \(V_{\text{AXIS1}}, V_{\text{AXIS2}}, V_{\text{AXIS3}}, V_{\text{AXIS4}} \) in the new basis \(\beta \)). Each term vector \(c_i \) in the new term matrix \(\text{C} \) can be calculated by multiplying each
vector \(u s_1 \) in US by \(\beta^{-1} \). This possibility was originally suggested by Hu, Cai, Wiemer-Hastings, Graesser, and McNamara (2007):

\[
C = (US)(\beta^{-1})
\]

[1]

This method is direct and has no mathematical complexity. However, it should be pointed out that the other matrix \(\beta \) which serves as the basis will in all likelihood not be orthogonal. For \(\beta \) to constitute a new basis, it must meet the requirement that the \(k \) vectors which it contains must be linearly independent. This is guaranteed, unless the words chosen to form two concepts are exactly the same. The problem is that in \(\beta \) vectors can be (and will probably be) correlated, as a null correlation is a very particular case. So \(\beta \) lacks orthogonality, or, put otherwise, \(\beta \) is an oblique basis. Generating a new \(C \) matrix with \(\beta \) being a non-orthogonal matrix makes later interpretation of the coordinates difficult. In fact, a non-orthogonal basis often creates a space that is hardly usable, as the original distances between the term vectors are not preserved (Olmos et al., 2014; Visinescu & Evangelopoulos, in press). To ensure the orthogonality of the basis, we applied Gram-Schmidt before using Formula 1 (see for example, Schneider, Steeg, & Young, 1987). Gram-Schmidt ensures that the vectors in \(\beta \) are orthogonal. Basically, what it does is transform the vectors in \(\beta \) into similar ones (which constitute the \(\beta' \) basis) while preserving orthogonality. The requirement imposed is that the \(\beta \) vectors must be similar to the \(\beta' \) vectors, so that correlation between a vector and its orthogonalized version must be greater than or equal to .70. The reason is that \(.70^2 \approx .50 \), so both vectors must share at least 50% of variance (see details in Olmos et al., 2014). In the study performed, it was found that the correlation between the vector in the first conceptual axis in \(\beta \) and its orthogonalized correction in \(\beta' \) was: \(r_{\beta_1\beta'_1} = 1 \); the second correlation between the vector in the second conceptual axis in \(\beta \) with that in \(\beta' \)
was $r_{\beta_2\beta'_2} = .987$. In turn, $r_{\beta_3\beta'_3} = .962$ and $r_{\beta_4\beta'_4} = .890$, so in all cases the requirement $r_{\beta_i\beta'_i} > .70$ was met. Experience tells us that by choosing words that are not really redundant and when the number of meaningful dimensions (i.e. conceptual axes) is not high, there will be no reliability problems preserving the orthogonal basis. In the specific example of the expository text, the vectors that constitute basis β' are very similar to those in β before orthogonalization was forced. Thus, in order to obtain the new semantic space C' the following was used:

$$C' = (US)(\beta'^{-1})$$ \hspace{1cm} [2]

At this point we have a new meaningful semantic space in C'. The first four dimensions now bear the meanings that we have given to them, in such a way that a term whose coordinate is high in the first dimension will be related to the first conceptual axis (strangler trees in humid, tropical, jungle areas, etc.), a word whose coordinate is high in the second dimension will convey abundant information about the second conceptual axis (the asphyxiation and strangulation process), etc. The benefits of having a meaningful semantic space are obvious: in C' we can interpret the coordinates of the terms or summaries (at least in the p meaningful dimensions), and yet this is not the case in the original space US, given that the k dimensions are meaningless.

Projection of the summaries onto C'. The rest of the method is simple. Because the four first dimensions reflect the conceptual axes of the text (although then it is necessary to verify a posteriori whether those new dimensions really capture well the intended meaning), by projecting a summary onto the new semantic space C' we will have what that summary saturates in each of the four dimensions (note that the projection of the summaries is in the k-dimensions of C', so the first four dimensions are meaningful and the remaining $k - p$ are abstract/meaningless dimensions). Thus we will be able to see how much each summary bears of each conceptual axis of the rubric.
The global score of a summary is a linear combination of the mentioned dimensions. In the specific case of this study, the same weight was given to each of the four conceptual axes, so the total score of the quality of the summary is the sum of all four dimensions. There is the possibility of previously standardizing the dimensions, turning them into standardized scores for those coordinates.

3. Study I: Validation of the Inbuilt Rubric method

3.1 Material and methods

3.1.1 Summaries

To perform the study, the text was given to 78 students, 43 from the second year of ESO (8th grade; average age 13.86) and 35 from the fourth year of ESO (10th grade; average age 15.94). They were allowed to read the explanatory text on strangler trees, which was 500 words long, for 10 minutes. They were then given a multiple-answer comprehension test. They were finally asked to write a short summary of the text they had read (a maximum of approximately 100 words). 35 of the 78 students were boys and 43 were girls.

3.1.2 Judges' evaluations

Two judges independently assessed each of the 78 summaries written by the students. The assessments were performed as follows. Every judge had to assign 0 to 2 points to each of the four conceptual axes created when establishing the rubric (not necessarily integer values). The correlation between both judges was .89, and the two judges' scores were averaged.

3.1.3 Linguistic corpus

A developmental linguistic corpus compiled between 2012 and 2013 was used to train the LSA. It compiled paragraphs from texts suitable for different ages: 4 to 6 years
old, 7 to 9 years old, 10 to 12 years old, 13 to 16 years old, and over 16. The corpus included transcriptions, textbooks, and novels. The latent semantic space included words that appeared at least 7 times. The weighting method for the occurrence matrix was entropy (see Nakov et al., 2001 for a review). The terms were lemmatized to avoid the large number of verb forms in Spanish. The final latent semantic space had 13,389 different terms and 29,905 documents. Both the training and the ensuing change of basis and re-orthogonalization of the space were carried out using Gallito 2.0 (Jorge-Botana, Olmos & Barroso, 2013), a piece of software that makes it possible to perform the entire Inbuilt Rubric method process.

3.1.4 Data analysis

Several statistical analyses were performed to validate the Inbuilt Rubric method. To begin with, the judges’ assessments were used as an external criterion to verify the reliability of the Inbuilt Rubric method in summary assessment. Reliability was rated using the Pearson correlation coefficient. Secondly, as further evidence of validity, the reliability of the Inbuilt Rubric method proposed was compared with that obtained using a well-known method which has worked well in LSA automatic assessment, the Golden Summary (a method which consists in using one or several golden summaries with which students summaries are compared; see, e.g. Foltz, Laham & Landauer, 1999a).

Thirdly, to validate each of the four dimensions that represent the conceptual axes, four linear regression models were created using the coordinates (scores) in the four dimensions bearing the conceptual axes in C' as independent variables (i.e., only the p meaningful dimensions from the summaries are taken into account). The variables that depend on each of the four models were the scores given by the judges to the summaries in the four conceptual axes respectively. What is expected is for the beta
coefficient of the dimension that expresses a specific conceptual axis to be higher than the coefficients of the other three dimensions, thus establishing a converging validity argument. Thus the beta coefficients of the other conceptual axes are low (discriminating validity). Put otherwise, the C' coordinates that reflect the conceptual axis j can be expected to contribute more than the coordinates of any of the other three dimensions when it comes to predicting the scores given by the judges in the summaries of conceptual axis j.

Fourthly and lastly, the point to which the method is able to detect lack of contents in the summaries of the secondary education students was established. This is due to the desire to give a more widespread use to the method, and for it to be able to provide feedback to students to instruct them about the strong and weak points in their summaries (Graesser et al., 2000; Kintsch, Steinhart, Stahl, & LSA research group, 2000). For this reason, the judges' scores were dichotomized in the four conceptual axes in such a way that both scores reflected whether the summary sufficiently covered the required concept or not. Likewise, the LSA scores were dichotomized in such a way that the method establishes whether the summary sufficiently contained the conceptual axis required or not. Finally, a double-entry table was created by crossing the judges' criteria with those of the method to find the degree of equivalence in these dichotomized scores and the reliability of content detection was analyzed by means of the Kappa index.

3.2 Results of study 1

3.2.1 Reliabilities

Firstly, the reliability of the new method proposed was examined by means of the judges' assessment and this reliability was compared with the best classic methods: the Golden Summary method. Results are shown in Table 1. The reliability found between the Inbuilt Rubric and the expert judges was .82. The reliability between the
classic LSA method, the Golden Summary, and the expert judges was .66. Finally, the
correlation between both LSA methods was .66.

Table 1. Reliability of the LSA methods and expert judges

<table>
<thead>
<tr>
<th>LSA assessment methods</th>
<th>Expert judges</th>
<th>Inbuilt Rubric</th>
<th>Golden Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbuilt Rubric</td>
<td>.82**</td>
<td></td>
<td>.66**</td>
</tr>
<tr>
<td>Golden Summary</td>
<td></td>
<td>.66**</td>
<td></td>
</tr>
</tbody>
</table>

Note: ** p < .01. N = 78

Statistically, the Inbuilt Rubric standardized regression coefficient was found to
be significantly higher than that of the Golden Summary when it comes to explaining
the judges' scores (χ²(1) = 8.435, p = .0037), so it is a significantly more reliable
method. The differences between both methods can be graphically seen. Figure 1 shows
the scatter plot between the global scores granted by the LSA and the new method
proposed and the judges' assessments. Figure 2 displays the same relationship between
the Golden Summary method and human judgments. The first scatter plot shows that
the relationships is closer, that there is a higher degree of linearity, and that there is less
dispersion around a regression line than when these aspects are compared in the scatter
plot that compares the Golden Summary method and the experts' judgments.

Figure 1. Scatter plot linking the LSA method, Inbuilt Rubric, to the experts' judgments
Figure 2. Scatter plot linking the LSA method, *Golden Summary*, to the experts’ judgments.
3.2.2 Tests of the method’s validity

To show that the Inbuilt Rubric assessment method is valid, we studied whether each of the respective dimensions chosen for the change of basis predicted the contents of the conceptual axes of the summaries. For example, the conceptual axis *survival* generated by means of the words *adaptation*, *survival*, and *survive* should predict better than any of the other three dimensions the scores given by the expert judges to that specific conceptual axis in the summaries. In turn, the *sun light* dimension generated by the lexical descriptors *competition*, *sun*, *light* is expected to predict better than the other three dimensions the scores given by the judges to the summaries on the specific conceptual axis. The same idea applies to the other two conceptual axes.

To this end, four multiple regressions were carried out where the predictor variables were the LSA coordinates in those four dimensions. The variables depending on each of the regressions were the judges’ scores in the four contents assessed in the summaries. Results are shown in Table 2.

Table 2. Beta standardized regression coefficients of the LSA conceptual axes on the judges’ evaluations

<table>
<thead>
<tr>
<th>LSA survival dimension</th>
<th>Beta coefficients of linear regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survival conceptual axis</td>
</tr>
<tr>
<td></td>
<td>.782**</td>
</tr>
<tr>
<td>LSA sun light dimension</td>
<td>.089</td>
</tr>
<tr>
<td>LSA strangle tree dimension</td>
<td>.191*</td>
</tr>
<tr>
<td>LSA asphyxia dimension</td>
<td>-.157</td>
</tr>
</tbody>
</table>

Note: **p < .01, *p < .05; the highest standardized regression coefficient is given in bold type*

The highest beta standardized regression coefficient in each of the four regressions is given in bold type in Table 2. The results show that the highest coefficient in each of the regressions coincides with the predictor that theoretically contributes
most to account for the expert judge’s score. The results are particularly clear in the survival conceptual axis, where it can be seen that the LSA dimension that mentions that concept is clearly a higher predictor than any of the other three dimensions. The results are also clear for the sun light competition conceptual axis, where its respective LSA dimension also captures and contributes to predicting those human judgments better than any other one. As regards the third conceptual axis, its respective dimension has the highest beta standardized regression coefficient. Where this association between LSA dimension and its respective concept is least clear is in the last regression. In it, the highest regression coefficient is also that of its conceptual axis, although the other three conceptual axes are also statistically significant and there is not such a large difference in the magnitude of the regression coefficients as in the other three regressions. It seems thus that each LSA conceptual axis is sensitive to each conceptual axis in the experts’ judgment.

3.2.3 Capacity to discern whether it contains a specific content or not

Can the method detect which summaries contain a given conceptual axis and which ones do not? Finally, we tried to find whether the new method implemented has the capacity not only to globally assess a summary’s quality in a reliable way, but also the extent to which it detects the conceptual axes missing in a summary and those which it does contain. This aspect is more related to the method’s capacity to correctly instruct a student who has not provided all the contents required in a summary. So the strength of the method can also focus on its capacity to instruct and give feedback to students, in addition to its capacity to provide a global score of a summary’s quality that correctly matches human judgments.

To this end, the regression models previously described were used, introducing also a new predictor: the module or length of the summary’s vector, as it is a predictor
that has always proven to be effective in summary assessment. In this case, the goal of these regression was, rather than find, as before, the relative contribution of each predictor to human judgments, to predict whether the student's summary contained the content assessed or not. The goal, for example, for the first regression is to decide, using the method proposed, whether a student's summary contains the *survival strategy* conceptual axis, suitably described. To this end, the two judges dichotomized the scores given in each content. Given that the scores in each of the four contents ranged from 0 to 2 points, it was decided that the summary would lack content if the score did not reach 1.00. The prediction made by the linear regression was dichotomized in exactly the same way. It was decided that if the predicted score did not exceed 1.00 points the summary would lack the content assessed. The opposite would apply if the predicted score exceeded 1.00 points.

Table 3. Predictions of the Inbuilt Rubric model with the correct predicted percentage and Kappa of Cohen reliability

<table>
<thead>
<tr>
<th>Experts' classification</th>
<th>Survival conceptual axis</th>
<th>Sun light conceptual axis</th>
<th>Strangle tree conceptual axis</th>
<th>Asphyxia conceptual axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbuilt Rubric predicted</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>2</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>% correctly predicted by the model</td>
<td>85.9%</td>
<td>83.3%</td>
<td>85.9%</td>
<td>80.8%</td>
</tr>
<tr>
<td>Kappa</td>
<td>.60**</td>
<td>.64**</td>
<td>.41**</td>
<td>.58**</td>
</tr>
</tbody>
</table>

Note: **p < .01, *p < .05

Results are shown in Table 3. Given the correct rating percentages, the results are frankly good. Correct rating percentages exceed 80% in all cases. The Kappa indices are close to 0.60, which is regarded as good by experts (Pardo & San Martín, 2010).

These results show that the Inbuilt Rubric method can be sound to provide feedback to students pertaining to the gaps in their written answers. Other possibilities can also be
examined. For example, as well as deciding to find whether a summary contains a specific content or not, a classification that is binary and too closed, the quality of a specific content can be rated on a continuum, and decide on the basis of less strict criteria, such as whether the content is included or not. It is easier to move along this continuum than to make yes/no decisions, as students can be told to contemplate the possibility that their summaries do not contain certain ideas in the conceptual axes proposed in the rubric.

4. Study II: Application of the Inbuilt Rubric method to a method for automatic assessment of discursive texts in a university sample

4.1 Objectives of study 2

In study 2, the techniques used in the controlled situation in study two were applied in a virtual course in a distance learning environment at the Spanish National Distance Education University (UNED). The purpose of this second study was to verify whether the methodology proposed could be employed in an environment in a stable manner, both technically and functionally. It was examined whether some type of recognizable trajectory could be identified in the quality of the written answers reviewed by the participants in a writing task in successive essays. To this end, an online system was created to facilitate mass use of content feedback based on the transformations described in study 1. To this end, a scenario of real use of the method described in study 1 was generated. In addition, the degree of assistance which this experience would have provided in the learning process was measured by means of a final survey.
4.2 Material and methods

4.2.1 Participants

As part of the learning activities of the Educational Psychology course included in the Psychology degree, students were asked to take part in a summarization task based on some of the contents which they were to learn. 924 out of 2,530 students decided to take part in this online activity. Of these, we considered for analysis the results of 864 participants – those who completed a full task cycle comprising: (1) drafting of the answer, (2) automatic assessment; (3) immediate feedback, (4) rewriting the answer, (5) new automatic assessment, and (6) new immediate feedback. The 60 participants who failed to complete a full task cycle were excluded as outliers.

4.2.2 Material

The instructional text that served as the reading to conduct this study was chapter 8 of the Spanish version of the book Cognitive Psychology and Instruction (Bruning, Schraw & Norby, 2012), called "Problem-solving and critical thought".

4.2.3 Task

Because the application is implemented on the web, students only needed to have their own computer, an Internet connection, and a browser. In this practice, students were asked to carefully read the book chapter and told that they would be asked a question about its content in a week (in this case, a summary with a limited number of words). They were also told that they would have to use a feedback system to review their answer (summary) and improve it; finally, they would have to submit the summary that best fit the information received in the various feedbacks. The "acceptance area" for a summary was determined by an area that had 10% of the values or elaboration levels in the Conceptual Axes defined (see Study 1) for the task as its upper and lower levels.
The central point of this ideal elaboration level was defined as the score reached by the Golden Summary prepared by three specialists in the subject (all three of whom held PhDs in Educational Psychology) on said Conceptual Axes. In this case the proposed subject for the summary was “Expertise in problem-solving”. The various aspects of the selected subject (the text that students had to examine to write their summaries) were scattered through the target text. This subject was intentionally chosen so that no specific definition of it was to be found in the target text, although it was possible to build one based on different sections of it. The summary’s ideal length ranged between 110 and 130 words, and the students were advised to keep their summaries within this word range. Students were told that submission would be official and evaluated, thus promoting motivation for good use. The following week they were told the question which they would have to answer (make a summary) and the link to use to access the feedback system to start the training. The application link was provided in the common-use virtual course. It was available for three days. The minimum or maximum number of text summaries which students could submit was not restricted. Because this was a pilot study, the application conditions were not restricted so as not to harm performance in answer quality. Thus, conditions of use were very variable and spontaneous as regards an initial assessment of the method proposed.

4.3 Procedure

As was mentioned, the idea was to create a system that used the aforementioned techniques (the transformation of some dimensions into concepts) and made it possible to provide online feedback on the basis of the conceptual axes that constitute a rubric. The components to build said system were the following:

4.3.1 Linguistic corpus
An Educational Psychology corpus composed of digitalized text books was used as the training corpus. In order to enrich the corpus and with the purpose of covering more generic topics we also included the Diagnostic and Statistical Manual of Mental Disorders-IV (1994), and some psychological texts from International the Statistical Classification of Diseases and Related Health Problems 10th Revision (CIE-10 in Spanish, 2008), and other expository texts in the field of Psychology. This corpus was processed by Gallito 2.0 (Jorge-Botana et al, 2013), which generated the latent semantic space, \(\text{US} \). This corpus was lemmatized in Spanish, and a minimum number of 7 term occurrences was also required for representation in \(\text{US} \). Occurrence matrix \(X \) was softened by means of the Log-Entropy function (Nakov et al, 2001). The final occurrence matrix was reduced to 250 dimensions. The final number of terms was 5,210, and that of documents 8,786.

4.3.2 Inbuilt Rubric Method

Four experts agreed on the rubric for the evaluation of the text proposed. This Inbuilt Rubric was elaborated through an iterative procedure. Human experts participated in the definition of the Conceptual Axes (four conceptual axes were also selected a priori). Lexical descriptors for each axis were selected. These descriptors were then validated taking into account their representation in LSA. Thus, if the semantic representation of the descriptors was in the expected relation to the conceptual axis, they were retained. However, if these descriptors were polysemic or if their semantic representation did not correspond to the conceptual axis, they were discarded and more suitable ones were sought. The way to validate descriptors consists in extracting from the semantic space a list of the 100 terms most closely related to them (i.e., the descriptors initially selected for each axis). Some descriptors in that list are discarded and a few are included as terms in the axes. The process continues until the
selected descriptors make the axis correctly represent the expert’s idea in the semantic space (the way to check this is to also extract lists of semantic neighbors).

For example, terms such as “cognitive” were discarded due to their ambiguity, while more specific terms in relation to scaffolding, such as “social interaction” were retained. So the process of Inbuilt Rubric construction can be seen as a result of human/LSA collaboration (see Brew & Leacock, 2013). Using the lexical descriptor chosen, the latent semantic space US was transformed into the new space C'. The entire process of transformation of the latent semantic space was also carried out using Gallito 2.0 (Jorge-Botana et al, 2013).

4.3.3 Process of projection onto the transformed space

An online process inside Gallito 2.0 transforms the text entered by a student into a vector first and then to project the vector onto the transformed space C' (so that the first four dimensions in C' were meaningful and the remaining ones up to k were abstract). After doing this, the feedback simply consisted in making visually explicitly the summary scores in each of the four conceptual axes (see Figure 3 below). The distribution of the scores of these four dimensions constitutes the pattern of the student’s summary.

4.3.4 Golden summary

The scores of an ideal summary drafted by an expert and agreed with by the other three experts to establish an ideal area in which a student’s text that correctly covers each of the conceptual axes is expected to fall were used. The confidence area was established by adding to and subtracting 10% of the ideal summary scores from those scores (see Figure 3). The magnitude of the scores for the four conceptual axes was not the same. Their importance depends on the space devoted to each conceptual axis in the ideal summary and in any case was agreed by the four experts.
4.3.5 Smoothing and correction

Because there is a risk that the scores in a student's synthesis will soar due to an overlong summary, and in order to reward the use of technical words and words related to the golden summary, a weighting formula was applied according to the size and purity of the meaning (Formula 3), in which P_i is the weighting index for the text by student i.

$$P_i = \min \left(1, \frac{\text{inT}_i / \text{outT}_i}{\text{inT}_G / \text{outT}_G} \right) \min \left(1, \frac{n_G}{n_i} \right) \text{ [3]}$$

Where inT_i is the mean of the four dimensions that reflect each of the four conceptual axes and outT_i is the mean of the other abstract dimensions (it should be borne in mind that, as stated in the section Projection of the summaries onto C', the summary projections take place in the k-space, so that we have a number p of meaningful dimensions and a number $k-p$ of abstract dimensions). This ratio reflects how well chosen the summary words are. A high value $(\text{inT}_i / \text{outT}_i)$ means that the summary fits well the conceptual axes required and does not provide information that is not relevant to the task. It should be noted that this ratio is divided into $(\text{inT}_G / \text{outT}_G)$, which expresses the same notion in the golden summary. So this ratio of ratios has a clear meaning: over 1 would mean that the student's summary is even more focused and adheres more to the task than the golden summary (it is extremely rare to find values higher than 1, and in any case 1 cannot be exceeded in this part of the weighting).

Values near zero would mean that the student's summary is very far from the goal set by the golden summary. The other part of the formulation prevents overlong summaries. n_G is the number of words in the golden summary (66 in this task), and n_i is the number of words in the student's summary. For example, a summary that has twice the number of words as the golden summary yields .50 in that part of the equation, so that it is penalized with 50% of its score. A student who wrote one single word would yield 66 in
the formula, as it would fall within the minimum of 1 and 66, and no penalty would be applied (a one-word summary would have, however, a very low ratio \((inT_i/outT_i)\), so it would be penalized by this other part).

4.3.6 Memorization of the previous pattern

A process that memorizes that pattern of the previously entered text was also implemented in the system. This is standard in analogous feedback systems (Kintsch et al, 2007). In this way, a reference is provided for change, and the consequences of changes in the text can be made visually explicit.

4.3.7 Scenario for use

The sequence for use was the following; students enter their summaries into a text box provided in an online interface (see Figure 3 once again). This interface sends the text to an application hosted in a server that projects the text onto a vector in the transformed semantic space. In addition, the weighting formula is also calculated (see Formula 3 below) on the basis of the size and topic. The golden summary vector is preloaded in the server, in such a way that the scores in the space are not calculated with every request to this server. Finally, the server returns to the interface application (Figure 3) a list (in XML format) of the four coordinates or scores in the student's summary and in the golden summary (represented as acceptance area), together with the weighting index. In this way, the interface application displays a graph showing two patterns, one for the student's text (continuous red line) and another one for the golden summary. A third pattern is also displayed, showing the previous pattern of the student's text (if the student has made a previous attempt, a dotted red line).
4.4 Results of study 2

4.4.1 General descriptors and some outstanding results

Table 4 shows the main descriptive values of the total summaries, the number of meaningful words in the answer given, that is, the number of open words (nouns, verbs, adverbs, and adjectives) (it should be pointed out that that value of this variable for the golden summary is 66 words). The cosine or semantic similarity between the summary written in the first attempt and the ideal summary is also shown (a value ranging between
0 - no similarity - and 1 - maximum similarity). The cosine for the best attempt is also shown, as well as the first attempt-best gain, which is the result of subtracting the cosine of the best attempt from the value of the cosine in the first attempt.

Table 4. Descriptive values per student

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean n open words</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of essays</td>
<td>21.5</td>
<td>39.4</td>
</tr>
<tr>
<td>Number of words in the first essay*</td>
<td>63.5</td>
<td>34.9</td>
</tr>
<tr>
<td>Number of words in the best essay*</td>
<td>82.2</td>
<td>30.5</td>
</tr>
<tr>
<td>Cosine for the first essay</td>
<td>.8606</td>
<td>.1123</td>
</tr>
<tr>
<td>Cosine for the best essay</td>
<td>.9232</td>
<td>.0228</td>
</tr>
<tr>
<td>Initial essay – Best essay gain</td>
<td>.6256</td>
<td>.1099</td>
</tr>
</tbody>
</table>

Note: N = 864 students; SD = standard deviation; * not including stop words

In order to analyze the apparent heterogeneity of the way in which participants work, the 864 participants were divided into equal percentiles based on the cases explored, with two cut-off points (33.3%) in the total number of attempts. The result was that 313 made between 2 and 6 attempts (the feedback from the first attempt is given once a second attempt is made), a second group of 275 subjects made between 7 and 17 attempts, and a third, more heterogeneous group, made between 18 and 53 attempts. It was found that there were significant differences between the average number of words in the three groups in the first attempt (F(2, 861) = 5.096; p < .001; partial $\eta^2 = .01$). In turn, the first group (2 to 6 attempts) produced a significantly higher number of words in the first attempt than the other two groups (first group mean 69.1 and third group mean 58.7, $p < .05$, and second group mean 65.3 and third group mean 58.7, $p < .05$). However, the results for the Number of words in the best attempt variable, (F(2, 861) = .481; $p = n.s.$), did not show differences between the three groups, that is, regardless of the initial strategy, all three groups adjust their best answer to the length described in the instructions for the task.
As regards the *Cosine for the First attempt* variable [Bonferroni post-hoc test \(F(2, 861) = 6.953; p < .001; \text{partial } \eta^2 = .02\)], a significant difference was found between group 1 (.8791) and 2 (.8532) \((p < .05)\), in favor of the first one; another one between group 1 (.8791) and 3 (.8469) \((p < .005)\), also in favor of 1; and none between groups 2 (.8532) and 3 (.8469) \((p = 1)\); which seems to highlight that the subjects that make a smaller number of attempts (very possibly working in a more planned way) start their series of assessments with a more elaborate initial answer, which is likely the result of spending more time on effort on it, reflecting an offline intellectual work procedure. This result underlines the importance of considering that planning is, from an instructional point of view, also an important component of revision, as stressed in some recent models of the writing process (MacArthur, 2007). These differences between work patterns inside or outside the system ecology have been informally observed in some studies (Van Labeke, Whitelock, Field, Pulman, & Richardson, 2013).

As regards the *Cosine for the best attempt* variable [Bonferroni post-hoc test \(F(2, 861) = 29.199; p < .001; \text{partial } \eta^2 = .07\)], the existence of a significant difference in favor of group 2 (.9221) as opposed to 1 (.9171) \((p < .05)\) should be pointed out; another difference in favor of group 3 (.9310) also as opposed to group 1 (.9171) \((p < .001)\); and a third difference in favor of group 3 (.9310) as opposed to group 2 (.9221) \((p < .001)\). These data seem to show that the answer-building strategies based on massive use of the automatic assessment tool achieve high semantic approaches to the golden summary. However, the underlying work strategy seems to be closer to the trial-error heuristics, although oriented by the feedback received after every automatic assessment - this might be called a work method based on successive online approaches.
As regards the **Initial-Best Gain** value or absolute increase in semantic similarity [Bonferroni post-hoc test ($F(2, 861) = 13.906; p < .001; \text{partial } \eta^2 = .03$)], the analysis shows a significant difference between the average value of group 1 (.0380) and 2 (.0688) ($p < .005$), in favor of the latter; another difference between group 1 (.0380) and 3 (.0840) ($p < .001$), in favor of the latter; but not between groups 2 (.0688) and 3 (.0840) ($p = .3$). These data seem to show again the differences between two work methods: one based on a higher degree of reflection and initial elaboration of the answer; and another one, more persevering and perfectionist, based on small gradual improvements, although perhaps less reflexive as a whole, but with higher absolute gains.

Two important matters should be highlighted here: (1) the work methods freely developed by the participating subjects, who, it should be remembered, were real university students (in distance education) when faced with an equally real task, were clearly productive, although due to their approach they significantly differ in terms of the "effort made" / "result achieved" ratio; (2) the lack of differences found between groups 2 and 3, both in the **Cosine for the first attempt** variable and in the **Initial-Best gain** value, can indicate the existence of a critical number of attempts that would define the work strategy followed, above which some of the effects on the correctness of the answer given disappear, however much the subject continues to persevere in the task in order to improve.

Despite the existence of the work methods described, given the size of the effects found, the effects, even if significantly different, must be seen as moderate.

4.4.2 Task adherence

One of the important factors to validate the functioning of an application is that its use complies with what is required. In the case of feedback application, when several
attempts are made, in order to infer that use of those attempts is natural and productive, each of the attempts must be somehow better than the previous ones. Put otherwise, the fact that relatively stable learning curves can be modeled and that they express adherence increases (understood as higher pattern similarity and lower gradual penalization indexes) indicates that the feedback system (the instructions given by the system, the expression of the conceptual axes, the expression of the change in score on the basis of the previous pattern, the acceptance zone) has served as a guideline. These curves would indirectly show that students understand the task and perform it in a natural way, with no incidents. It is also obvious that task adherence and the improvement in the summaries given by students due to the feedback received are indicators of the effect of this task on the processes of non-superficial review of the text.

On the basis of this reasoning, two latent curve models (Bollen & Curran, 2006) were adjusted to see if the task yielded a specific and recognizable trajectory in terms of summary quality indicators in the successive attempts made by the subjects. This is a crucial measurement to estimate its effectiveness in student review processes. Two quality variables were used: Weighting and Cosine. Weighting (see formula 3) measures the extent to which a student’s summary is similar to the golden summary in terms of its concision, use of suitable lexicon, and suitable number of words. It is therefore an index that also reflects many qualities in the student’s answers. It is an index that ranges between 0 (extremely poor quality) and 1 (quality similar to that of the golden summary). The cosine measures the semantic similarity between the student’s summary and the golden summary, so that it also ranges between 0 (poor quality) and 1 (good quality). Every additional attempt made by a student in this kind of task is expected to be accompanied by an increase in summary quality.
Two growth models, a linear and a quadratic one, were adjusted for the first seven attempts (57% of the sample - 525 subjects - made at least seven attempts). Full maximum likelihood was used as an estimation method to handle the lost values. No asymmetry or kurtosis values with an absolute value higher than 1 were found, which justifies the use of this estimation method.

Attempts were made to adjust a linear growth model for both quality indicators, but the goodness of fit indexes showed that trajectories did not fit linear growth. A quadratic model was then tested, which displayed acceptable goodness of fit indexes for the weighting quality indicator ($\chi^2_{\text{WEIGHTING}}(19) = 119.70, p < .001; \text{CFI} = .977, \text{TLI} = .975, \text{RMSEA} = .076, \text{SRMR} = .061$) and slightly less for the cosine ($\chi^2_{\text{COSINE}}(19) = 210.79, p < .001; \text{CFI} = .949, \text{TLI} = .943, \text{RMSEA} = .104, \text{SRMR} = .172$).

So as not to go on for too long and given that the cosine and the weighting are very similar, we will now describe the quadratic trajectory model for the weighting quality index. This was:

$$P_t = \alpha + \lambda T_0 \beta_1 + \lambda^2 T_0 \beta_2 = 0.671 + \lambda .029 + \lambda^2 (-.003)$$

where P_t is the weighting measurement expected of an average student in time t. It should be noted that the latent curve models by agreement assign value 0 to the first time (attempt), that is $\lambda T_0 = 0$ (in such a way that according to the model a measure $P_1 = 0.671$ is expected in the first attempt), value 1 to the second time (attempt), $\lambda T_1 = 1$, and so on until value $t-1$, $\lambda T_{t-1} = t-1$. In the model, α is the average intersection (the average weighting in the first attempt), β_1 is the average gradient associated with the linear term, and β_2 the average gradient associated with the quadratic term. The trajectory is graphically displayed in Figure 4, together with the observed student averages. The degree of overlap between the empirical curve and the modeled curve can be seen:
The coefficients in the Weighting model were:

Table 5. Coefficients of the latent growth curve model

<table>
<thead>
<tr>
<th></th>
<th>Est.</th>
<th>E.T.</th>
<th>Critical Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>.671</td>
<td>.006</td>
<td>118.38</td>
</tr>
<tr>
<td>β_1</td>
<td>.029</td>
<td>.003</td>
<td>10.40</td>
</tr>
<tr>
<td>β_2</td>
<td>-.003</td>
<td>.000</td>
<td>-7.60</td>
</tr>
<tr>
<td>σ^2_α</td>
<td>.021</td>
<td>.001</td>
<td>15.12</td>
</tr>
<tr>
<td>σ^2_β</td>
<td>.003</td>
<td>.000</td>
<td>8.83</td>
</tr>
<tr>
<td>σ^2</td>
<td>.000</td>
<td>.000</td>
<td>6.94</td>
</tr>
</tbody>
</table>

The variances in the model parameters were statistically significant, as can be seen in Table 5. So, even though the type of trajectory is stable (in task adherence, which is quadratic), variances show that there are individual differences in terms of intersection α (differences in the quality of the first attempt) and in gradients β (differences in the speed of adherence). This confirms what was previously described in the descriptive results, which suggested different ways to approach the task.

4.4.3 Rating of the degree of assistance in personal study
All participants were asked the same question: "To what extent did you find the activity helpful when studying the subject?" The question was posed on a 0 (minimum) to 5 (maximum) scale. Graph 5 displays the results. The results were highly positive. 85% of students gave scores of 3, 4, and 5, taken as indicators of a high degree of helpfulness; and 64% of all answers gave the two maximum values. This means that students perceive the task, and consequently the feedback received, as correct and useful, which leads us to think that the method helps them to write their answers and ultimately to orient their study and learn, although the method must still be tested on more controlled texts and contexts.

Figure 5. Ratings satisfaction percentages

5. Conclusions

We have presented a brief description and some promising results on the use of a new method called *Inbuilt Rubric*, based on LSA, for assessing students’ summaries and giving feedback about them. This method involves a transformation (via a change of basis and reorthogonalization) of the original latent semantic space into a new one that is non-
latent in nature. This new space is non-latent because its first dimensions are meaningful. In particular, such dimensions represent the conceptual axis of an academic rubric.

Inbuilt Rubric has been shown to probably be a more reliable (more comparative studies in addition to this one are required) and an economic assessment method for the kind of summarization task used in our studies than the traditional *Latent Space Instruments* (e.g., golden summary, partial golden summaries methods or pregraded summaries as an external measure of the summary quality). Its relationship to human judges’ scores of student produced summaries is higher (.82 as compared to .66); this is also shown by our regression equations. This has been further proved through the results of the scatter plots comparing human judges, *Golden Summary* and *Inbuilt Rubric*. As for the ability to provide feedback about the conceptual axes in a summary, this method displays significant equivalence with the experts’ judgments.

One of the main implications of the method process is that it makes it much easier to identify contents. Classic procedures, such as *Summary Street* (Kintsch et al., 2007), require comparing the student’s summary to partial golden summaries or statements that express those conceptual axes. May be, this involves longer writing times and problems regarding the quantity and sampling of the text to be collected in order to represent each concept. In *Inbuilt Rubric* this task is much simplified, as those axes are captured in the semantic space coordinates, given that the new semantic space contains a rubric in some of its dimensions. In this way, deciding whether the summary has sufficiently covered a conceptual axis or not is a simple task. Because every axis in the rubric is represented in a dimension in the summary vector, it suffices to compare that vector to another one representing a golden summary. This golden summary in turn contains the ideal rubric in its dimensions.
This idea was implemented in the second study by means of an online system in which 864 university students summarized a textbook chapter. The system offered visual feedback in which students can see whether their summary correctly captures each conceptual axis in the rubric with respect to an ideal range imposed by a golden summary. In this second study, students had the possibility of rewriting their summary as many times as they wished, and the visual feedback was provided again in each attempt. When they believed that the summary they had written was good enough, they would submit it. The results regarding use showed that students naturally performed the task, as their performance displayed an upward trajectory, which was expected if the feedback system helped to improve students' summaries. Finally, when asked about the degree in which this task had helped them to learn about the subject, 85% of students answered that it had helped in a high or very high degree. This is a valuable result given that at university, high school or in massive open online courses there exists a strong demand by teachers for automatic scoring or giving feedback on student essays (Balfour, 2013).

As a final conclusion, it should be pointed out that both the Inbuilt Rubric system and the system applied to a real situation are easy to implement, as the procedure does not require time to extract partial text samples to provide feedback, and has proven reliable to identify content quality. However, two things should be taken into account: a) firstly, the descriptor selection task for each axes requires practice; b) secondly, because the rubric is included in the space dimensions, every object of assessment must have its own semantic space, and thus take up more RAM memory in the computer equipment. In any case, current computer equipment has sufficient capacity to host many spaces coexisting simultaneously. Generally, automatic assessment methods work in expository
texts. *Inbuilt Rubric* method would be especially sensible to narrative texts. Building a rubric in narrative text and implementing it in LSA model is undoubtedly a challenge. In the future, it may be necessary to consider two main aspects: firstly, it is important to standardize the parameters to create the rubric into the LSA model (e.g., number of descriptors *per* conceptual axe, take into account the length of the summaries or essays, or to relate the rubric with golden summaries as in the study 2). Secondly, it is also important to incorporate psychometric properties in automatic open-ended assessment (i.e., reliability, content validity or, fundamentally, study the factor structure via confirmatory factor analysis to validate measurement models).

References

