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Abstract 

 

Context is a determining factor in language, and plays a decisive role in polysemic words.  

Several psycholinguistically-motivated algorithms have been proposed to emulate human 

management of context, under the assumption that the value of a word is evanescent and 

takes on meaning only in interaction with other structures.  The predication algorithm 

(Kintsch, 2001), for example, uses a vector representation of the words produced by LSA 

(Latent Semantic Analysis) to dynamically simulate the comprehension of predications and 

even of predicative metaphors.  The objective of this study is to predict some unwanted 

effects that could be present in vector-space models when extracting different meanings of 

a polysemic word (Predominant meaning inundation, Lack of precision and Low-level 

definition), and propose ideas based on the predication algorithm for avoiding them.  Our 

first step was to visualize such unwanted phenomena and also the effect of solutions. We 

use different methods to extract the meanings for a polysemic word (without context, 

Vector Sum and Predication Algorithm).  Our second step was to conduct an ANOVA to 

compare such methods and measure the impact of potential solutions. Results support the 

idea that a human-based computational algorithm like the Predication algorithm can take 

into account features that ensure more accurate representations of the structures we seek to 

extract.  Theoretical assumptions and their repercussions are discussed. 
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1. Introduction 

 
For decades now, there have been a significant number of psychological models 

proposing and explaining the processes by which humans understand the meanings of a 

word, sentence or text from different perspectives. During the seventies, some authors of 

memory studies took an interest in how a mental representation is stored in LTM (Long-

Term Memory1) forming semantic networks (e.g., Collins & Loftus, 1975; Collins & 

Quillian, 1969).  Also, discourse has given rise to a number of theoretical models of text 

comprehension over the last two decades (Glenberg, 1997; Goldman, Varma & Cote, 1996; 

Graesser, Singer & Trabasso, 1994; Kintsch, 1998; Zwaan & Radvansky, 1998).  Each of 

these models assigns a different weight to the role of context in driving comprehension and 

explaining how word or sentence disambiguation is formalized.  

 

Whilst some of these models have been implemented in some form, such 

implementations were not powerful enough to cover a wide range of real situations. 

However, the recent application of several statistical techniques, powerful programming 

methods (such as Object-Oriented Programming), new standardized ways of representing 

entities (such as XML) and new ways of instantiating mathematical objects (such as sparse 

matrices) have improved our ability to capture large bodies of information in a form that 

attempts to mimic such mental representations.   

 

This is the case of Latent Semantic Analysis (LSA), a linear algebra and corpus-

based technique that has been proposed by some authors as a very effective tool for 

simulating human language acquisition and representation (Landauer & Dumais, 1997).  

LSA analyzes a corpus and constructs a dimensional matrix (usually sparse) where each 

row represents a unique digitalized word (term) and each column represents one document, 

paragraph or sentence. After some linguistic calculations on this matrix (local and global 

weighting of each term), the original matrix is reduced via Singular Value Decomposition 

(SVD). In the resulting matrices, known as a Semantic Space, a word or a combination of 

                                                 
1 Long-Term Memory is a static representation of permanent knowledge. It differs structurally and functionally from Working Memory, 
which stores items for only a short time and involves temporary activation of meaning. 



words is represented by a vector. To establish the semantic relationship between two words 

or documents, LSA uses the cosine of the angle between them. A cosine close to 1 reveals a 

strong semantic relationship, whereas a cosine close to 0 (or even negative) reveals no 

semantic relationship between the two words. The same principle can be applied to identify 

the semantic relationship between two documents, or between a document and a term. In 

addition, the LSA model uses vector length (calculated with Euclidian norm) of the term, 

which shows how well represented the word is in the semantic vector space. 

 

But LSA, and other models that capture co-occurrences such as the Topic model 

(Griffiths & Steyvers, 2004; Steyvers & Griffiths, 2007), does not itself distinguish 

between the different meanings of terms. It is merely a way of representing all the 

meanings a word can have, statically (Burgess, 2000), with biases and free from context. 

This, however, is not a disadvantage. The representation should be static since it emulates 

permanent knowledge, as in LTM. It should be biased since the different meanings 

represented in the semantic space are weighted according to their occurrences in the real 

world; this kind of asymmetry between the meanings of a word has been revealed using 

priming experiments in humans (Williams,1992). It should be context-free since such 

representations do not need separate entries for each meaning, as for example with 

lexicography (Kilgarriff, 1997).   With this lexical base provided by LSA, we need some 

mechanisms to be implemented in order to retrieve relevant meanings for a particular 

context. This has been shown to mimic some parts of human processing, and has produced 

good results in machines (Kintsch, 2000; Quesada, Kintsch & Gómez-Milán, 2001; Kintsch 

& Bowles, 2002; Denhière, Lemaire, Bellissens & Jhean-Larose, 2007; Kintsch, 2008) 

 

 

In this paper we focus our attention on simulating and visualizing how humans 

understand ambiguous words, using LSA as a static base of word representations, and the 

predication algorithm (Kintsch, 2001) as a mechanism to filter meanings (although we use 

other methods to set a baseline).  All processes result in a network diagram that helps us 

better understand language comprehension, and offer a plausible representation of 



polysemy in the mind which is also helpful to NPL (Natural Language processing) 

application designers.  

 

 

 

2. Polysemy in context   

 
Language is a complex system that implies deep relations between its components 

(visual and speech features, letters, words, sentences, paragraphs, texts and concepts). 

Nonetheless it strikes speaker or reader as an easy, automatic process, perhaps because 

humans can exploit and manage the context of what they perceive.  The properties of 

polysemy highlight the context effects that operate when we extract word meaning, since 

meaning depends solely on contingent information.  

 

 But in contrast with humans, generally speaking computers and most AI programs 

do not yet work with semantic context efficiently, because language is difficult material.  

For example, lexical matching or Boolean searches are hampered by the following 

limitation (Dumais, 2003): a word can have more than one meaning (e.g. the word “bug”) - 

this issue can be referred to as the polysemy problem - and a meaning can be expressed in 

more that one way (e.g. “tumor” and “neoplasm”) - this can be referred to as synonymy. In 

the context of information retrieval from documents in huge databases, polysemy hinders 

precision, which is the proportion of relevant documents retrieved compared to all those 

retrieved (many items are irrelevant because they belong to other meanings of the query).  

Knowledge about semantics and cognition can be used to address this problem.  The 

challenge is to establish mechanisms that filter the information like humans do, exploiting 

the contexts in which the word, the paragraphs or the texts appear.  

 

Some authors refer to this challenge as “the evolution from key-word to concept” 

(Kiefer, 2005), based on abandoning the idea of the word as our unit of retrieval, and 

focusing instead on concept retrieval.  This involves some techniques that can be 

implemented using human-like reasoning. On the one hand, there are those techniques that 

are based on categorization, such as controlled vocabularies and ontologies. Examples 



might be the word-net project, a human-based lexical database, or standards for 

constructing domain-specific ontologies and knowledge-based applications with OWL or 

XML-like editors such as PROTÉGÉ. And on the other hand there are statistical techniques 

using patterns of word co-occurrence. Here we will focus our work on some techniques that 

use statistical methods, such as LSA, and manage its representation in order to determine 

which meaning of a word is intended using context. This is often referred as 

disambiguation.  

 

 

 

3. LSA as a basis for semantic processing. 

 

 LSA was first described as an information retrieval method (Deerwester et al., 

1990) but Landauer et al (1997) suggested that LSA could be a step towards resolving the 

kind of human advantages that concern the capturing of deep relationships between words. 

For instance, the problem called “poverty of the stimulus” or “Plato’s problem” asks how 

people have more knowledge that they could reasonably extract from the information they 

are exposed to.  The solution is that a functional architecture such as LSA allows us to 

make inductions from the environment – i.e. the reduced vectorial space representation of 

LSA (explained in the introduction) allows us to infer that some words are connected with 

one another even if they have not been found together in any sentence, paragraph, 

conversation, etc. Furthermore, Landauer & Dumais use a simulation to show that for the 

acquisition of knowledge about a word, the texts in which that word does not appear are 

also important. In other words, we will acquire knowledge about lions by reading texts 

about tigers and even about cars; the higher the frequency of a word, the more benefit 

obtained from texts where it does not appear.  These observations are in line with studies 

that measures the capacity of nth order relations (second order and above) to induce 

knowledge (Kontostathis & Pottenger, 2006; Lemaire & Denhière, 2006). 1st order relations 

indicate a type of relationship where the two words occur in the same document of a 

corpus. With 2nd order relations the two words do not occur together in a single document, 

but both occur together with a common word. Higher relations indicate that words don’t 



occur together or linked by a common term. The links lie at deeper levels. These studies 

conclude that while first order relations can overestimate the eventual similarity between 

terms, high-order co-occurrences - especially second order relations - play a significant 

role. 

 

Given such a “human-like” representation, it is not surprising perhaps that spaces 

formed with LSA have proven adept at simulating human synonymy tasks - managing even 

to capture the features of humans errors (Landauer & Dumais, 1997; Turney, 2001), and 

also at simulating human graders’ assessments of a summary (Foltz, 1996; Landauer, 1998; 

Landauer & Dumais, 1997, Landauer, Foltz & Laham, 1998; León, Olmos, Escudero, 

Cañas & Salmerón, 2006). 

 

   

The way in which LSA represents terms and texts is functionally quite similar to 

others stochastic word representation methods. Each term is represented using a single 

vector that contains all information pertaining to the contexts where it appears. Each vector 

can be thought of as a box containing meanings. The most salient meaning is the most 

frequent in the reference corpus (the corpus used to train LSA) followed by other less 

frequent meanings. Supporting the idea that LSA vectors make massive use of context 

information, some authors forced LSA to process material that had been tagged, marking 

explicit differences in usage of the term in each context. The word “plane”, for example, 

was given as many tags as meanings found (plane_noun, plane_verb). Such manipulation 

results in worse performance (Serafín & DiEugenio, 2003; Wiemer-Hastings, 2000; 

Wiemer-Hastings & Zipitria, 2001).   

 

Nevertheless, Deerwester et al. (1990) draw attention to some limitations in 

representing the phenomena of homonymy and polysemy. As explained above, a term is 

represented in a single vector. This vector has certain coordinates. Since it has several 

meanings, these are represented as an average of its meanings, weighted according to the 

frequency of the contexts where it is found. If none of its actual meanings is close to that 

mean, this could create a definition problem. This recalls the criticisms leveled at older 



prototype-based models, which proposed the existence of a prototypical form - the sum of 

the typical features of the members of that category. The criticism argues that if the 

prototype is a cluster of features of a category, and bearing in mind the variability of the 

typical elements, paradoxically the resulting prototype used to establish similarity is in fact 

a very atypical member, perhaps even aberrant (Rosch & Mervis, 1975). 

 

Theoretically the observations of Deerwester et al. (1990) are true, but less so if we 

enhance LSA’s static representation by introducing some kind of mechanism that activates 

meaning according to the active context at the moment of retrieval. As Burgess (2000) 

claims in response to a criticism by Glenberg & Robertson (2000), LSA is not a process 

theory, but rather a static representation of one kind of knowledge (the knowledge drawn 

from the training corpus). To simulate the retrieval process we have to manage the net of 

information supplied by LSA and exploit the representations of terms as well as those of 

context. Using this mechanism, LSA has been attempted to simulate working memory 

(Kintsch, 1998), paragraph reading (Denhière et al., 2007), processing whole sentences 

(Kintsch, 2008) and even approaches to reasoning (Quesada et al., 2001) and understanding 

predicative metaphors (Kintsch, 2000; Kintsch & Bowles, 2002).  

 

All this simulations have to do with word disambiguation within a language 

comprehension framework, with the assumption that the value of a word is evanescent and 

takes on meaning only in interaction with other structures (Kintsch, 1998). There is no way 

to disambiguate the word planta2 (plant) if we have no further data. Perhaps some general 

meanings are automatically triggered in people’s minds, such as the plant kingdom, but we 

can draw no definite conclusion in this respect. If someone asks us “¿Qué planta?” in an 

elevator, an evanescent representation is generated which responds to a task demand, in a 

context that had previously activated both linguistic and non-linguistic content.  According 

to Kintsch (2008), an ideal implementation of a mechanism that generates such an 

evanescent representation requires only two components: flexible representation of words, 

and a mechanism that can choose the correct form in a given context, taking into account 
                                                 
 
2 Planta in Spanish has several meanings in common with the word “plant” in English – for example it can be used to 
refer to the plant kingdom of living things, and to industrial or power installations. However, other senses are not shared: 
in Spanish planta also refers to the floors of an apartment block, for example. 



representation biases. LSA can provide a good basis for representing words and texts in 

terms of discrete values. It is a statistical data-driven technique offering flexible vector 

representation, thus claiming some advantages over ontologies, for instance (Dumais, 

2003). Its clear metric (operations with vectors) allows us to implement efficient algorithms 

such as the predication algorithm (Kintsch, 2001). 

 

In summary, storage and retrieval are not independent processes. The form in which 

a term is stored, even if this seems very atypical or even aberrant, is not critical. What is 

important is that, as in real life, linguistic structures take on the correct form, in line with 

the context, at the time of retrieval.  The goal is to manage the flexible representation well. 

As Kintsch (1998) stated, knowledge is relatively permanent (the representation that 

supplies LSA) but the meaning - the portion of the network that is activated - is flexible, 

changeable and temporary. 

 

 

4. The Predication Algorithm operating on LSA.  

 

 As we saw above, resolving polysemy involves retrieving the right meaning for a 

word in its context, and ignoring irrelevant meaning.  In order to do this, we need to 

implement a mechanism that activates only that meaning of the word pertinent to the 

retrieval context. 

 

Suppose this structure (the word “planta” in the context of the word rosal): 

 

“El rosal es una planta” (The rosebush is a plant) 

 
 
 One way to show the meaning of such a structure is by listing the semantic 

neighbors closest to that structure (the vector that represents it). To extract these semantic 

neighbors we need a procedure that calculates the cosine between this vector and all vector-

terms contained in the semantic space, and keeps a record of the n greatest values in a list - 



the n most similar terms to the selected structure. Using this procedure we should obtain 

neighbors related to the plant kingdom.  

 

But the word “planta” has more meanings: 

 

“La electricidad proviene de la planta” (The electricity comes from the plant) 

“El ascensor viene de la planta 3” (The elevator came from the 3rd floor) 

 

 All these structures have the term “planta” as a common denominator, while this 

same word takes on different meanings. We all know that in “El rosal es una planta” the 

word  “planta” does not have the same meaning as in “la electricidad proviene de la 

planta”. The same term acquires one or other set of properties according to the contexts 

that accompany it. In other words, the properties that give meaning to this term are 

dependent on the context formed by the other words. 

 

 Let us take the proposition TERM [CONTEXT], assuming that the TERM takes on 

some set of values depending on the CONTEXT. Both TERM and CONTEXT would be 

represented by their own vectors in an LSA space. 
 

 To calculate the vector that represents the whole proposition, the common form of 

LSA and other vector space techniques would simply calculate a new vector as the sum or 

the “centroid” of the TERM vector and the CONTEXT vector. 

 

Thus if the representation of the vectors according to their coordinates in the LSA space 

were: 

 

TERM vector= {t1,t2,t3,t4,t5,…,tn} 

CONTEXT vector= {c1,c2,c3,c4,c5,…,cn} 

 

Then the representation of the whole proposition would be: 

 

PROPOSITION vector = {t1+c1, t2+c2, t3+c3, t4+c4, t5+c5,…, tn+cn} 



 

 Due to the limitations of representation of meanings in LSA (Deerwester et al, 

1990) explained earlier, this is not the best way to represent propositions, as it does not take 

into account the term's dependence on the context. In other words, to compute the vector of 

the entire proposition we do not need all the properties of the TERM (“planta”), only those 

that relate to the meaning of the subject area (plant kingdom). What the centroid or Vector 

sum does using the LSA method is to take all the properties - without discriminating 

according to CONTEXT - and add them to those of the TERM. 

 

 

 

 

 

 
 

 

Figure 1. Bias of the Centroid method between the words “Planta” and “Rosal”. Due to the 
vector length of the terms, the vector of Planta(Rosal) is close to the vector of Planta.



 
 

 All the properties of the term “planta” are taken into account when calculating 

the new vector. If, as in the above example (figure 1), the CONTEXT has a much lower 

vector length than the TERM, and other meanings are better represented in the TERM, 

the vector that represents the predication will not capture the actual intended meaning. 

The meaning will be closer to the meaning of the context most represented in the LSA 

space. With this simple vector sum method, the length of the term-vectors involved 

dictates which semantic properties the vector representing the predication will take on. 

We can therefore assume that the Vector Sum method fails to account for the true 

meaning of certain structures, and tends to extract definitions of a given structure that 

are subordinate to the predominant meaning. 

 

 The Predication Algorithm (Kintsch, 2001), as its name suggests, was first used 

on Predicate (Argument) propositions such as “The bridge collapsed”, “The plan 

collapsed”, “The runner collapsed”. Nonetheless it may be used for general 

Term(Context) structures. It aims to avoid this unwanted effect by following some 

simple principles based on previous models of discourse comprehension such as 

Construction-Integration nets (Kintsch, 1998).   These principles are founded on node 

activation rules that show how the final vector representing Term(Context) must be 

formed with the vectors of the most highly activated words in the net.  This activation 

originates from the two terms (Term and Context-term), spreading to all words in the 

semantic space (see figure 2).  It is assumed that the more activated nodes, the more 

words are pertinent to both Term (T) and Context (C) where T is constrained by C. 

 

 

 

 

 

 



 

igure 2. Predication net between the words “Planta” (Plant) and “Rosal” (Rosebush). 

To apply this algorithm it is necessary to have an LSA semantic space or some 

 
F
Only neighbors of the Predicate relevant to the Argument will receive high activation: 
“vegetal” (vegetable) and “hoja” (leaf). 
 

 

 

 

other vector space model as a starting point (see Kintsch, 2001 for an in-depth 

presentation of the procedure). The steps are as follows: 1) find the n first terms with 

greatest similarity to the Term (T), n being an empirical parameter.  2) Construct a net 

with excitatory connections between each of those n terms and the Term (T), and 

between each of those n terms and the Context (C).  In each case the cosine is used as 

the connection weighting value, i.e. a measure of similarity between the words.  3) 

Some inhibitory connection between terms in the same layer can be implemented (terms 

in the n first terms layer compete with one another for activation while they are 

activated by Term (T) and Context (C) )  4) Run the net until all nodes are recalculated 

using a function that uses excitatory and inhibitory connections and promotes bilateral 

excitation of each node (the net does not need a practice trial because the definitive 

weights are those imposed by the LSA matrix).  5) The final vector for the predication is 

calculated using the sum of the Term-vector (T), Context-Vector (C) and the p most 

activated vector-nodes (again, p is an empirical value and p < n).  The idea is that these 

p terms are semantically related to both predicate and argument.  The Context filters out 
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the n terms most closely related to the Term, and of these retain only the p terms most 

pertinent to both predicate and argument. 

 

 Once the vector T(C) is established it can be compared with the terms in the 

semantic space (using cosine or another similarity measure) to extract a list of semantic 

neighbors - the meaning that is most closely related to the structure, and which would 

contain a definition of it. This is the way that we use the predication algorithm to 

resolve polysemy issues, where meaning is constrained by a particular context.

 

5. Objectives   

 

 The main aim of this article is to analyze the disambiguation of a polysemic 

word in a retrieval context and reveal the biases that affect it. 

 

 Whilst several studies have used larger contextual units such as sentences or 

paragraphs (Lemaire, Denhière, Bellisens & Jhean-Larose, 2006; Olmos, León, Jorge-

Botana & Escudero, 2009), we have used a single context word to modulate the 

meaning of a polysemic word.  Such a small window of context has been referred to in 

other studies as a micro-context (Ide & Veronis, 1998).  The word “plant” takes on one 

meaning or another depending on the context word (“rosebush” or “energy”).  Our 

feeling is that combinations such as Word/Context-word3 are a more parsimonious way 

to visualize the concepts, whilst preserving sensitivity to minor changes in context 

word, and this is therefore the framework we use to investigate the behavior of vectorial 

space models such as LSA. 

 

 

 We consider three problems concerning the system’s approach to processing 

polysemic words (see Jorge-Botana, Olmos, León, 2009, for a previous study with a 

specific domain corpus and different meanings of diagnostic terms).  Problems emerge 

during the extraction of a polysemic word’s meaning (as defined by its neighbors), both 

with and without an explicit context. 

 

                                                 
3 Following the notation adopted in section 4, we refer to Word/Context-Word structures as  [T(C)]. 
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I) Potential problems extracting the meaning of polysemic words with no explicit 

context.  

 

(I.a) Predominant meaning inundation: It is possible that only the predominant 

meaning of a word arises, if other meaning are not sufficiently well-

represented in the semantic space.  

 

(I.b) Low-level definition: It is possible that not only predominant meanings 

are generated, but terms are restricted to local relationships with the polysemic 

word.  In a previous study using a scientific corpus, some neighbors extracted 

were excessively ascribed to local relationships (Jorge-Botana et al., 2009).  

For example, when extracting the list of neighbors for “fobia” (phobia), we 

obtained a list with many words such as “shy”, “humiliating”, “girls”, 

“embarrassing” and “shops”, whereas an ideal list would also contain 

neighbors which best represent the general topics of psychopathology and 

designate higher categories such as “fear”, “sub-type”, “exposure” or 

“anxiety”. The lack of this kind of terms was probably due to the simple cosine 

frequently promoting highly local relationships in the comparisons.  It seemed 

that most of the neighbors rarely appear without the polysemic word.  

 

 
II) Potential problems extracting the meaning of polysemic words with explicit context.  

 
(II.a) Predominant meaning inundation: As in case I.a above, if the context-

word is represented weakly in the semantic space, it is possible that only the 

dominant meaning of the polysemic word is generated. 

 

(II.b) Imprecise definition: Even when the retrieval context is the dominant 

meaning of the polysemic word (in the semantic space), the meaning extracted 

may be very general if the vector length of the word is greater than that of the 

context-word. The result is that the meaning extracted from the polysemic 

word is related to the context word but is not sufficiently precise.  
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(II.c) Low-level definition: As in case I.b, the meaning facilitated by the 

context-word may be generated, but the terms that represent this meaning are 

related in a very local way with the polysemic word.  These terms usually co-

occur in documents containing the polysemic word but never without it.  

 
Problem I.a cannot be solved by computational systems (nor by humans), since 

there is no explicit context to guide the correct meaning of a polysemic word. The 

meaning extracted depends on the representation of each context in the semantic space.  

When context is present, problems II.a and II.b, we propose, can be resolved by 

applying Kintsch’s algorithm, as explained in section 4.  In the case of problems I.b and 

II.c, we propose to extract the neighbors that represent each meaning, adjusting the 

simple cosine with the vector length of each term in the semantic space.  This should 

produce a more “high-level” neighbor list, with words from local relationships as well 

as words that are less constrained by this kind of relationship.  The function simply 

weights the cosine measure according to the vector length of the terms (see section 7 

below), thus ensuring a semantic network with some well-represented terms.  This 

method showed good results in a previous study using a domain-specific corpus (Jorge-

Botana et al., 2009), and our aim now is to apply it to a general domain corpus like 

LEXESP.   

 

We will use the following protocol: 

 

In the first step, visualization, we visualize two meanings of two words in a 

semantic network as an example. We will extract semantic neighbors using the two 

methods outlined in section 4: Vector Sum and the Predication Algorithm. A base line 

condition is also used extracting the neighbors for each word without context. This 

procedure will allow us to visualize the probable main biases in the disambiguation of a 

word using LSA or another vector-space method, (explained as problems II.a and II.b).  

 

In the second step, to test the efficiency of the predication algorithm, we 

examine a sample of polysemous items conjoined to their contexts. To compare its 

efficiency, we conduct an ANOVA comparing the three conditions from the 

visualization step, and numerically demonstrate the biases of these steps. 
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6. Visualizing the networks 
 

6.1 Procedure 
 

 
Following on from the work of authors who extracted and ordered all meanings of 

some polysemic terms – for instance “apple” as a software company or a fruit 

(Widdows & Dorow, 2002) – we represent polysemic meanings using a term-by-term 

matrix (N×N) in which each cell represents the similarity of two terms from the list of 

the n most similar terms (n first semantic neighbors)  to the selected structure. For example, in 

the case of “planta”, the term-by-term matrix would comprise the first n semantic 

neighbors extracted. The resulting matrix was the input to Pathfinder4. 

 

Our aim was to calculate the vector that represents the structure, its neighbors and 

the similarity between them, using LSA as our static basis for word representation, 

combined with some derived methods to solve the problems outlined in section 5.   

 

The main procedure is as follows: 

 

First, we drew the net of the polysemic word alone without any context word (e.g.  

“plant”), in order to see the natural predominant meaning.  This method involves 

extracting a list of the term’s semantic neighbors5  and compiling a graph with them 

(Pathfinder input). This diagram will highlight the problems that arise from (I.a 

Predominant meaning inundation). The examples that we use are planta and partido6, 

polysemic words without any context. 

 

  Second, we drew the net for the polysemic word T accompanied by two context 

words (C1 and C2), (e.g. [plant (energy)] joined to [plant (rosebush)]).  We calculate the 

values of each structure, T(C1) and T(C2), with the simple vector sum of their 

component vectors (Vplant + Venergy) and  (Vplant + Vrosebush), and again extract the 

semantically related neighbors for each structure.  Finally, we compile a graph with all 

                                                 
4 We explain Pathfinder Network Analysis in section 7 (method) 
5 Semantic neighbors of a term (or of a structure) are extracted comparing the vector of the term with each of the terms in the LSA 
semantic space.   
6 Partido in Spanish has several meanings, the commonest being “political party” and “game/match” (only in the sense of playing 
competitively).   

 17



such neighbors.  This will reveal problems II.a (Predominant meaning inundation) and 

II.b (Imprecise definition).  The actual examples we use are partido (fútbol, 

nacionalista) [match/party (football, nationalist)] and planta (rosal, piso) [plant/floor 

(rosebush, apartment)].   

 

Third, we also drew the net for the polysemic word T accompanied by each of two 

contexts C1 and C2, but this time calculating the values of the two structures, T(C1) and 

T(C2), using Kintsch's predication algorithm (Kintsch, 2001).  Again, we extract the 

neighbors of each structure (both vectors calculated with Kintsch's predication 

algorithm) and join them to make a graph.  This will show the proposed solution to the 

problems (II.a Predominant meaning inundation) and (II.b Imprecise).  In other words, 

we sought to verify whether Kintsch's predication algorithm is an effective method to 

visualize the meanings of the two meanings together (compared to the first and second 

conditions).  The examples we use are again partido (fútbol, nacionalista) [match/party 

(football, nationalist)] and planta (rosal, piso) [plant/floor (rosebush, apartment)]. 

 

 Additionally, to search for a solution to problems I.b and II.c (Low-level 

definition), we compose the extracted list of neighbors from the vector representation of 

each structure in each condition (isolated word, vector sum and predication algorithm) 

using two methods: the simple cosine measure to find the similarity between vectors, 

and the cosine corrected using vector length (Jorge-Botana et al., 2009).  The 

assumption behind this latter method is that it more carefully avoids local relationships. 

We will explain this method in the following paragraph.  

 

 

6.2  Method 

 

- Conditions.  In this study we propose three different conditions for extracting 

a list of neighbors: 

 

 A) Isolated Word.  To obtain a reliable benchmark value, we extract neighbors 

for isolated words (T) (such as “planta”).  This shows us the actual representation of a 

word, independent of the retrieval context.  We extract two lists of 30 neighbors, one 
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obtained using the simple cosine method, and the other with simple cosine adjusted for 

vector length (explained below). 

 

B) Word/Context-word vector sum.  We need to contrast the predication 

algorithm results with a baseline value, so we extracted neighbors of the vector of each 

Word/Context-word, T(C1) and T(C2), using the classical method to represent complex 

structures – the simple vector sum.  We extracted 30 neighbors for each of the two 

vectors and using each of the two methods (30 with simple cosine, 30 adjusting the 

cosine according to vector length) and so obtained four lists with a total of 120 terms.  

Repeated terms were deleted and reduced to a single representation, and the four lists 

were then merged.  

 

C) Word/Context-word with predication algorithm.  In this condition we extract 

semantic neighbors of each Word/Context-word, T(C1) and T(C2), using the predication 

algorithm (Kintsch, 2001).  We extract 30 neighbors of each of two predication vectors 

with each of the two methods (30 with simple cosine, 30 adjusting the cosine according 

to vector length), again obtaining four lists with a total of 120 terms.  As before, 

repeated terms were deleted and reduced to a single representation, and the four lists 

were merged to produce the input to Pathfinder (the square matrix of terms).  

 

- LSA, corpus and pre-processing.  LSA was trained7 with the Spanish corpus 

LEXESP8 (Sebastián, Cuetos, Carreiras & Martí, 2000) in a “by hand” lemmatized 

version (plurals are transformed into their singular form and feminines are transformed 

into their masculine form; all verbs are standardized into their infinitive form).  The 

LEXESP corpus contains texts of different styles and about different topics (newspaper 

articles about politics, sports, narratives about specific topics, fragments from novels, 

etc.).  We chose sentences as units of processing: each sentence constituted a document 

in the analysis.  We deleted words that appear in less than seven documents to ensure 

sufficiently reliable representations of the terms analyzed. The result was a term-

document matrix with 18,174 terms in 107,622 documents, to which we applied a 
                                                 
7 For calculations we used Gallito ®, an LSA tool implemented in our research group and developed in Microsoft® .Net  
(languages: VB.net and C#) integrated with Matlab ®.  We also use this tool to implement the predication algorithm with net 
activation calculations (available at www.elsemantico.com).   
8 In a study of Duñabeitia, J.A., Avilés, A., Afonso, O., Scheepers, C. & Carreiras, M.(2009), semantic pair similarities of the 
vector-words from this space have displayed good correlation with their analogous translations to English using  spaces from an 
LSA model by http://lsa.colorado.edu/  and from HAL (Hyperespace Analogue to Lenguage) hosted at http://hal.ucr.edu/ , and also 
with judgment of Spanish natives speakers. 
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weighting function. This function attempts to estimate the importance of a term in 

predicting the topic of documents in which it appears. The weighting functions 

transform each raw frequency cell of the term-document matrix, using the product of a 

local term weight and a global term weight. We applied the logarithm of raw frequency 

as local weight and the formula of entropy as global term weight. We applied the SVD 

algorithm to the final matrix, and reduced the three resulting matrices to 270 

dimensions.  The mean of the cosines between each term in the resultant semantic space 

is 0.044, and the standard deviation is 0.07.  

 

- Parameters for the predication algorithm. We have set n (n first terms with 

greatest similarity to the Term T) at 5% of the total number of terms in our space, and k 

(number of activated term nodes whose vector is taken to form the final representation 

of the structure T(C)) equal to 5. 

 

- Methods for extracting the list of neighbors: Simple cosine and simple 

cosine adjusted for vector length.  Once we have a vectorial representation of the 

structure (Word/context-word or Isolated word), this vector must be compared with 

each term in the semantic space in order to extract the list of neighbors. Two different 

methods were used:  

a) The simple cosine with each vector-term in the semantic space, this 

being the traditional method.  

[Similarity = Cosine (A, I)] where A is the vector that represents the 

structure from which we want to extract the neighbors (word/context 

word, Isolated word) and I is each of the terms in the semantic space. 

 

b) The simple cosine adjusted for vector length.   

[Similarity = Cosine (A, I) × log (1 + Vector length (I))], where A is the 

structure from which we want to extract the neighbors (word/context 

word, Isolated word) and I is each of the terms in the semantic space.  

 

 Based on previously successful results (Jorge-Botana et al., 2009), we decided to 

use both methods in order to obtain more authentic results, and both lists were used to 

construct the graphs. 

 

 20



 
          

       
  

Method for extracting 
neighbors 

 Structure and concrete examples used Cosine 
Cosine adjusted 
w/ vector length 

Isolated word W Planta (Plant/Floor) 30 30 
W(WC1) Planta (Rosal) [Plant/Floor 
(Rosebush)] 30 30 Word/Context word  

Vector Sum W(WC2) Planta (Piso) [Plant/Floor 
(Apartment)] 30 30 

W(WC1) Planta (Rosal) [Plant/Floor 
(Rosebush)] 30 30 Word/Context word with 

predication algorithm W(WC2) Planta (Piso) [Plant/Floor 
(Apartment)] 30 30 

 
Table 1. First, two lists of 30 neighbors were obtained for the isolated condition (W) - one with cosines 
and the other applying the correction to the cosine. Second, four lists are extracted from the 
Word/Context word structures formed with the Vector Sum condition - two for the first predication W 
(WC1) and two for the second predication W (WC2), one for each approach to extracting neighbors, 
cosines and corrected cosine.  Thirdly, lists of the Word/Context word structures formed with the 
predication algorithm were extracted in the same way. 
 

 
 
 

- Similarity Matrix.  In order to understand and visually compare the semantic 

structure of the networks, visualization techniques were applied. As input data, we used 

a symmetrical N×N matrix that uses cosines to represent the semantic similarity of each 

term with all others. These terms are all the words merged in the list of neighbors from 

conditions in the previous steps (Isolated Word, Word/Context-word vector sum, 

Word/Context-word with predication algorithm) . In other words, N is the total number 

of terms in these three lists. For instance, in the case of Word/Context-word with 

predication algorithm N counts the two lists for the first structure T(C1) plus the two 

lists for the second structure T(C2) (Repeated terms of the merged list were deleted) 

 

Following the methodology proposed by Börner, Chen and Boyack (2003), we 

first need to reduce this n-dimensional space as an effective way to summarize the most 

meaningful information represented in the network matrix.  Analyzing scientific 

literature on visualization reveals that the most useful dimensionality reduction 

techniques are multidimensional scaling (MDS), Factor Analysis (FA), Self-Organizing 

Maps (SOM), and Pathfinder Network Analysis (PFNets). 
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- Dimensionality Reduction.  For this study we chose Pathfinder Network 

Analysis (Schvaneveldt, 1990; Guerrero-Bote et al., 2006; Quirin et al., 2008), a robust 

method widely used in computer science, information science and cognitive science 

research, originally conceived to extract what human subjects judged to be the most 

pertinent concept-concept relations.  Networks pruned with this algorithm are known as 

PFNets. Our aim using the Pathfinder algorithm is to obtain a clearer, more easily 

comprehensible network by pruning less significant links between terms – those which 

violate the ‘triangle inequality’ since they do not represent the shortest path between 

two terms.  In contrast with other dimensionality reduction techniques, Pathfinder 

preserves the stronger links between terms instead of dissipating them among multiple 

spatial relationships. 

 

The Pathfinder algorithm makes use of two parameters: r and q.  The first 

determines how to calculate the distance between two terms that are not directly linked.  

Possible values for parameter r are 1, 2 and ∞.  For r = 1 the path weight is the sum of 

the weights of links along the path; for r = 2 the path weight is the Euclidean distance 

between the two terms; and for r = ∞ the path weight is the maximum link weight found 

on the path.  Parameter q indicates the maximum number of links along the path in 

which the ‘triangle inequality’ must be satisfied.  The q value must be in the range 0 < q 

< N, where N is the number of terms.  Modifying q and r values, we obtain different 

PFNets, with different topological structures.  For this study we used q = N-1 and r = ∞ 

as pruning values, because our trials have shown that the resultant networks are visually 

clearer and the links preserved are the most pertinent.  

 

- Spatial layout.  Once we have pruned the networks, in order to visually 

represent them in a 2D space we need to apply a graph layout algorithm.  The layout 

algorithms aim to place all graph nodes (in our case terms) in positions that satisfy 

aesthetic criteria: nodes should not overlap, links should not cross, edge length and node 

distances should be uniform, etc. (Börner, Sanyal & Vespignani, 2007).  The most 

widely-used layout algorithms are those known as Force-Directed Layout algorithms, 

specifically those developed by Kamada & Kawai (1989) and Fruchterman & Reingold 

(1991).  
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Whilst Fruchterman and Reingold’s algorithm is more suitable for representing 

fragmented networks (i.e. a network comprising many components or sub graphs with 

no connections between them), Kamada and Kawai’s algorithm has proved more 

suitable for drawing non-fragmented PFNets (r=∞; q=N-1) (Moya-Anegón, Vargas, 

Chinchilla, Corera, Gonzalez, Munoz et al., 2007).  For our study Kamada and Kawai’s 

algorithm might constitute a good option, but instead we chose a novel combination of 

techniques to spatially distribute PFNets (r=∞; q=N-1) that demonstrate even better 

results.  We use Fruchterman and Reingold’s algorithm, but with a previous radial 

layout.  Radial layout is a well-known low-cost layout technique, where a focus node 

was positioned in the centre of the visual space, and all other nodes were arranged in 

concentric rings around it.  Once radial layout is applied, then Fruchterman and 

Reingold’s algorithm optimizes the spatial position of the nodes.  These algorithms have 

been implemented in a network viewer application, developed by the SCImago research 

group, which is also being used for visual representation of scientific co-citation 

networks (SCImago; 2007). 

 

- Visual Attributes.  In addition to the information represented by the term’s 

spatial position and its connection with other terms, the graph contains other useful 

information, encoded using two visual attributes: a) the node’s ellipse size indicates the 

term’s vector length; b) the width of the link indicates the weight of the semantic 

relationship.  

 

- Related visualization studies for LSA with Pathfinder.  It is difficult to 

locate previous research that combined LSA with Pathfinder Network Analysis and 

spatial layout algorithms.  One pioneering example is a 1997 study by Chen (Chen & 

Czerwinski, 1998), in which document-to-document semantic relationships (but not 

term-to-term networks) are visually represented using PFNets and LSA.  Kiekel, Cooke, 

Foltz & Shope, (2001) applied PFNets and LSA to a log of verbal communication 

among members of a work team – very different source data to the type used in this 

study.  Recently, Zhu and Chen (2007) have represented the terms of a collection of 

documents using graphs, using LSA to represent the semantics of the corpus, but 

without the Pathfinder pruning method. 

 

6.3 Results and discussion 
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6.3.1 Results and discussion regarding PARTIDO (FÚTBOL, 

NACIONALISTA) [match/party (football, nationalist)]  

 

  - Isolated word.  If we consider “partido” in isolation9, only the general 

meanings referring to a “political party” are extracted (see figure 3).  Only three or four 

nodes were assigned terms that corresponds to football topics (zone separated by line a 

in figure 3); all others contained political terms, an effect we have referred to as 

Predominant meaning inundation – the predominant meaning of “partido” is political.  
 
      
 
 
 

                                                 
9 Note that the word “partido” does not need to be located in the center of the net, because owing to the spatial distribution of the 
visualization algorithm, it will be located around the words with links to it that were not pruned, i.e. around the words with strongest 
semantic relationships with “partido”. This visual effect will be valid for all of the nets. In the cases where the term (T) is tested 
with two contexts (C1) and (C2), although all terms in the net are related with (T), the term is normally located near one of the 
meanings because not all the senses of the polysemous words are equally probable, and there is usually a dominant sense. 
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Figure 3. Visual representation of the word “partido” in isolation, without any retrieval context word. 
Note that the word “partido” don’t need to be located in the center of the net because, due to the spatially 
distribution of the visualization algorithm, it will be located around the words with the most similarity 
with it, although all terms have enough similarity with it to be a neighbor. This visual effect will be valid 
for all the nets. In the cases in which the term (T) is tested  with two contexts (C1) and (C2), although all 
terms of the net are related with (T), the term use to be located near to one of the sense because not all the 
polysemous words are equiprobables and usually have a dominant sense.  
  
 

 

- Word/Context word - vector sum condition.  To test contexts we formed two 

structures, Partido (Nacionalista) [nationalist party] and partido (fútbol) [football 

match].  Using the simple vector sum, the sports-related topics make gains against 

political topics (zone separated by line in figure 4). Introducing the football context 

reduces the predominant meaning inundation effect but fails to eliminate it completely. 

When we introduce the context word nacionalista it imposes a purer definition in the 
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shape of growing number of terms such as “republican”, “nationalist” and “Basque”, 

although most political terms are still related to politics in a more general meaning – 

something we referred to previously as an imprecise definition. 
 
     
 

 
Figure 4. Visual representation of the word “partido” presented with two context words: “nacionalista” 
(nationalist) and “fútbol” (football) forming two structures: Partido(nacionalista) and Partido(football). 
The predication algorithm is not applied on this occasion.  
 

 
 

 

- Word/Context word with predication algorithm condition.  As we can see from 

figure 5, sports-related meaning has enjoyed a surge relative to terms related to the 
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argument “nacionalista”.  There is now no sign of the Predominant meaning inundation 

effect mentioned earlier (see the two zones separated by the line a), and the vast 

majority of political terms were concerned with nationalism, such as regions with 

nationalist parties (e.g., “Cataluña”, “Euskadi” or “Pais Vasco”, “Galicia”, 

“Andalucía”), languages spoken there (e.g. “castellano”, “catalán”, “vasco”), 

nationalist political parties (e.g., “PNV”, “Esquerra”), and even names of other political 

parties that operate in those regions (e.g. “PSOE”, “PP”, “UCD”).  The predication 

algorithm has managed not only to retrieve the elements of “partido” with a political 

meaning, but also to retrieve some terms referring to a specific political sub-sector. This 

time the definitions of items more closely matched to the topic, avoiding the imprecise 

definition effect.  In comparison with the vector sum condition (see figure 4), political 

meaning is expressed using different terms.  An additional anecdotal phenomenon is 

that link between the two contexts is a football coach “Clemente”, a native of the 

Basque country.  This is a more orderly manner in which to link the contexts than the 

structural links generated in the two other conditions.   

 

 Since we wanted to avoid the meaning of our nets being flooded with very 

extreme local relationships, we had applied the correction based on vector length 

mentioned above10, as used in a previous study (Jorge-Botana et al., 2009).  Some long 

term vectors were therefore obtained, e.g. for “jugar” (to play), “juego”(game), 

“lengua” (language), “equipo” (team), “gobierno” (goverment),  “vasco” (Basque),  

“socialista” (socialist), “español” (Spanish), “campo” (stadium or countryside), 

“partido” (political party or game/match), “mundial” (world cup or worldwide), 

“Barcelona” and “elección” (election).  These terms with long vectors (represented by a 

large circle) do not necessarily coincide with the terms with more or stronger links (in 

bold type).  As we can see from the network, just the opposite is true: nodes with more 

than one branch are usually occupied by terms with low vector length.  It could be 

claimed that such concrete terms are key examples of these concepts’ definitions.  This 

is probably due to the fact that words with short vectors are present only in those 

contexts that represent the single topic, and are attached to the topic that promotes the 

context.  This makes these terms unmistakable features of the any definition – for 

partido (fútbol) they are words such as “UEFA”, “disputar” (to contend), “futbolístico” 

                                                 
10 We did so to extract the neighbors for all three nets, but we explain the results in the Word/Context Word with 
predication algorithm condition. 
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(relating to football), “liga” (league), “seleccionador” (coach),  “selección” (national 

team), “centrocampista” (midfielder), “gol”(goal); for partido (nacionalista) they are 

words such as “nacionalista” (nationalist), “voto” (vote), “PSE” (Basque socialist 

party), “PNV” (Basque nationalist party), “CIU” (Catalan nationalist party), “PSC” 

(Catalan socialist party).  In contrast, terms with longer vectors are often found in a 

variety of contexts, and are related to a wider range of topics than those facilitated by 

the context, blurring the relationship with the key concrete terms.  These longer vector 

terms are not unmistakable examples of a topic, but they are often contained in high-

level definitions of the topic facilitated by the context. Both kinds of terms are 

important to provide the concept definition without what we refer to above as the low-

level definition effect. 
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Figure 5. Visual representation of the word “partido” in the domain of two contexts “nacionalista” and 
“fútbol”. They forming two structures: Partido(nacionalista)” and Partido(fútbol)”. Now, predication 
algorithm is applied. 
 
 
 
 

6.3.2  Results and discussion regarding to PLANTA (ROSAL, PISO) 

[plant/floor (rosebush, apartment)] 

 

- Isolated word.  If we wish to retrieve the meanings of the word “planta” in isolation 

(figure 6), we obtain some of their more important related meanings.  Some have to do 

with power plants (zone separated by line a), some with the plant kingdom (zone 

separated by line b) and very few terms relate to buildings (zone separated by line c).  This 
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time there is no single predominant meaning inundation effect as there is more balance 

between meanings.  

 
     

 
 

Figure 6. Visual representation of the word “planta” with no retrieval context word. 
 
 
- Word/Context word vector sum condition.  As shown in figure 7, “planta” plus its 

contexts, but using the vector sum method, changes the visual network representation of 

the word planta.  Building-related meaning gains ground around the network, but 

energy-related meaning conserves some representative terms (zone separated by line a).  

Content related to the plant kingdom, those imposed by the context word “rosal” 

 30



(rosebush) still occupy a strong position, albeit in a very general meaning – again we 

see an imprecise definition effect. 
  
 
     
 

 

 
 
Figure 7. Visual representation of the word “planta” for two contexts, “rosal” and “piso” forming two 
structures: Planta(rosal) and Planta(piso)”. The predication algorithm is not applied in this case. 
 

 
 

 

- Word/Context word with predication algorithm condition.  When we use the 

predication algorithm (see figure 8) energy-related meaning disappears, and building-

related meaning proliferates and becomes more closely matched to the argument “piso” 
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(apartment) with terms such as “ascensor” (elevator), “escaleras” (stairs), “vestíbulo” 

(hall),  “alfombrado” (carpeting), “edificio” (building).  Furthermore, the plant kingdom 

meaning was more closely related to the argument “rosal” (rosebush), with flower-

related terms such as “pétalo” (petal), “olor” (smell), camelia (camellia), “flor” 

(flower), “perfume” (scent) and “aroma” added (see the different zones separated by 

line a).   

 

 Examining the effect of adjusting vector length of the cosines when extracting 

neighbors, we again managed to avoid meaning of the nets comprising only terms from 

extreme local relationships (low-level definition).  Terms such as “calle” (street), 

“casa” (house) or “sol” (sun), “rojo” (red), “color” (colour), “metro” (underground), 

“subir” (to go up), “coche” (car) demonstrate that high-level terms are also represented.  

As with the network for “partido”, terms with long vectors do not necessarily coincide 

with terms that have most links.  Again, words with short vectors such as “ascensor” 

(elevator), “pétalo” (petal), “rama” (branch), “flor” (flower) or “madera” (wood) occur 

in few contexts and only in contexts relating to a single topic.  This converts these terms 

into unmistakable features of a topic.  Terms with longer vectors, on the other hand, 

habitually occur in a wider variety of contexts, blurring their relationship with the 

central concrete terms. 
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Figure 8. Visual representation of the word “planta” in two context domains: “rosal” and “piso”, forming 
two structures: Planta(rosal) and Planta(piso). This time the predication algorithm is applied. 
 
 

 
 
7. Testing the networks  

 

 In order to test the suitability of using the predication algorithm in a survey of 

structures T(C1) and T(C2), we took a list of polysemic words and examined their 

similarities with possible context-words C1 and C2 in each of their possible structures. 

The procedure is based on a procedure explained in Kintsch (2008). The key is that 

every structure T(C1) must be related to its context C1 but not related with C2. The 

same effect must be true of T(C2), C2 and C1 respectively. With this idea in mind, we 
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test the three conditions that correspond with the diagrams above, taking the isolated 

condition as a base line.  

 

 7.1 Procedure 

 

 

 Our starting point is a table showing the similarities between T and the two 

contexts (C1 and C2) in the first and second column respectively. These two columns 

show the predominant meaning of the term in question T. 

 

 The next four columns show the similarity (cosines) between T(C1) and C1, 

T(C1) and C2, T(C2) and C2 and T(C2) and C1 respectively, where T(C1) and T(C2) 

are calculated using the vector sum. The last four columns show the similarity between 

T(C1) and C1, T(C1) and C2, T(C2) and C2 and T(C2) and C1 respectively, where 

T(C1) and T(C2) are calculated using the predication algorithm. These eight columns 

show the relationship between each structure and its possible meanings. For example, 

the fact that T(C1) has the same similarities with C1 and C2 would indicate that the 

method used to construct structure T(C1) is not powerful enough to filter out the 

dominant meaning of T (in this case, the meaning of C2). With this in mind we prepared 

such a table (Table 2), where the vector length of the two context-words C1 and C2 are 

smaller than the Term T.     

 
  Isolated Vector Sum P. Algorithm 
  T T(C1) T(C2) T(C1) T(C2) 
  C1 C2 C1 C2 C2 C1 C1 C2 C2 C1 
hoja (cuaderno/roble) 
leaf (book/oak) .22 .37 .42 .37 .53 .23 .52 .25 .71 .14 

copa (vino/fútbol) 
cup (wine/football) .33 .47 .73 .36 .87 .2 .79 .06 .92 .09 

banco (jardín/préstamo) 
bank11 (garden, loan) .11 .4 .49 .35 .46 .11 .58 .12 .69 .05 

rosa (clavel/matiz) 
rose (carnation/hue) .43 .16 .58 .16 .43 .41 .46 .28 .41 .38 

lila (lirio/matiz) 
lilac (iris/hue) .36 .25 .8 .25 .87 .28 .52 .29 .5 .46 

diente (ajo/colmillo) 
tooth12 (garlic/canine) .29 .46 .42 .48 .55 .3 .61 .35 .57 .27 

planta (rosal/ascensor) 
plant (rosebush/elevator) .24 .27 .33 .27 .54 .23 .46 .24 .78 .14 

                                                 
11 Meanings of the Spanish noun banco include bank and bench 
12 Meanings of the Spanish noun diente include tooth and clove 
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programa (software/tv) 
program (software/TV) .31 .36 .35 .36 .47 .31 .68 .3 .91 .1 

caja (préstamo/envoltorio) 
box13 (loan, packaging) .15 .24 .28 .23 .33 .14 .63 .06 .63 .05 

papel (actriz/cuaderno) 
paper14 (actress/notebook) .28 .26 .33 .26 .29 .28 .81 .05 .75 .22 

cadena (tienda/tv) 
chain15 (shop/TV) .11 .81 .44 .75 .87 .11 .61 .18 .91 .08 

partido (fútbol/nacionalista)
party (football/Nationalist) .33 .43 .5 .39 .49 .32 .96 .06 .91 .07 

bomba (misil/vapor) 
bomb16 (missile/steam) .37 .35 .82 .31 .74 .35 .85 .31 .77 .32 

     
    Table 2.  Similarities between structures and each context 
 

 
     

     
 With the table of similarities in place, we set out to calculate indices of the 

phenomena explained above - that is, to find whether the method used to construct the 

structures [T(C)] is powerful enough to filter out the dominant meanings and conserve 

the correct meaning. To do so, we calculate differences between cosines using the 

following procedure: 

 

1) Taking an absolute value of the difference between the cosine between T and C1 

and the cosine between T and C2 (column one and two of Table 2). This gives us a 

snapshot of the extent to which one meaning is predominant over another. The first 

column of Table 3 represents this calculation. 

 

For instance, in the case of the term Partido, we calculate Cosine(Vpartido , Vfútbol) = 

0.33 and Cosine(Vpartido , Vnacionalista) = 0.43. This means that Vpartido has to do more 

with the meaning ‘Nationalist’ than with the meaning ‘football’. The absolute value 

of the difference between the two cosines (0.1) shows the difference in dominance 

of the two context-words, one meaning being more dominant than the other.  

 

2)  For Table 2, we calculated the vector of the two structures T(C1) and T(C2) using 

the vector sum method, then calculated the cosine between the two structures and 

every context-word vector C1 and C2 (columns 3,4,5 and 6). In contrast, in this step 

                                                 
13 Meanings of the Spanish noun caja include box, safe-deposit box and bank teller’s window 
14 Meanings of the Spanish noun papel include role, paper  
15 Meanings of the Spanish noun cadena include chain, TV/radio channel 
16 Meanings of the Spanish noun bomba include bomb, pump 
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we subtract the first cosine from the second in every structure to indicate the 

strength of every structure’s correct meaning and filter out other meanings. In other 

words, Cosine(T(C1), C1) minus Cosine(T(C1), C2) and Cosine(T(C2), C2) minus 

Cosine(T(C2), C1). A negative value means that not only is the correct meaning not 

represented strongly enough but also that other meanings are better represented. The 

resulting values are in the second and third columns of Table 3. 

 

For instance, the result of subtracting Cosine(Vpartido fútbol, Vfútbol) from Cosine(Vpartido 

fútbol, Vnacionalista) is 0.11. This value will indicate the extent to which Vpartido fútbol  has 

the correct meaning and is not affected by the other meaning. On the other hand, 

subtracting the first cosine (Vpartido nacionalista, Vnacionalista) from the second (Vpartido 

nacionalista, Vfútbol) gives 0.17. This value will indicate the extent to which Vpartido 

nacionalista has the correct meaning and is not affected by the other meaning. 
 

3) The same procedure as 2) but this time with the columns where T(C1) and T(C2) has 

been calculated the predication algorithm was used – that is, Cosine(T(C1), C1) minus 

Cosine(T(C1), C2) and Cosine(T(C2), C2) minus Cosine(T(C2), C1) in columns 7,8,9 

and 10 of Table 2.  Again, a negative value means that not only is the correct meaning 

not represented strongly enough but also that other meanings are better represented. The 

resulting values are in the last two columns of Table 3. 

 

 To summarise, the last four columns in Table 3 indicate the bias toward the 

correct meaning represented by the vector of each structure. For example, .37 in the 

T(C1) column indicates that the vector of T(C1) is biased toward the meaning of C1. On 

the other hand, a value of .05 indicates that the vector of T(C1) is not biased toward the 

meaning of C1 (because similarity with the other meaning is still strong). The Isolated 

condition (the base line) is usually dramatically affected by the predominant meaning 

effect, and for this reason the differences are irregular.  If any of the other conditions 

were affected by the predominant meaning effect, the differences will be also variable, 

so the mean will be similar to the base line condition.       
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  Vector Sum P. Algorithm 
  

Isolated 
T(C1) T(C2) T(C1) T(C2) 

hoja (cuaderno/roble) 
leaf (book/oak) .15 .05 .3 .27 .57 

copa (vino/fútbol) 
cup (wine/football) .14 .37 .67 .73 .83 

banco (jardín/préstamo) 
bank (garden, loan) .29 .14 .35 .46 .64 

rosa (clavel/matiz) 
rose (carnation/hue) .27 .42 .02 .18 .03 

lila (lirio/matiz) 
lilac (iris/hue) .11 .55 .59 .23 .04 

diente (ajo/colmillo) 
tooth (garlic/canine) .17 -.06 .25 .26 .3 

planta (rosal/ascensor) 
plant (rosebush/elevator) .03 .06 .31 .22 .64 

programa (software/tv) 
program (software/TV) .05 -.01 .16 .38 .81 

caja (préstamo/envoltorio) 
box (loan, packaging) .09 .05 .19 .57 .58 

papel (actriz/cuaderno) 
paper  (actress/notebook) .02 .07 .01 .76 .53 

cadena (tienda/tv) 
chain15 (shop/TV) .7 -.31 .76 .43 .83 

partido (fútbol/nacionalista) 
party (football/Nationalist) .1 .11 .17 .9 .84 

bomba (misil/vapor) 
bomb (missile/steam) .02 .51 .39 .54 .45 

 
Table 3. Differences between the similarities, with measures of bias towards a 
meaning. 
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 With the table of the differences (Table 3), we conducted an ANOVA to see if 

the two methods are significantly different in efficiency. Using the Isolated column as 

our base line, the ANOVA had only one independent variable with three conditions: 

Isolated, Vector Sum and Predication Algorithm. The dependent variable is the 

difference represented in each cell of Table 3. We found homoscedasticity (FLevene(2,61) 

= 2.45, p = .097), but we did not found normality in one of the conditions (Isolate). The 

F-test is generally robust against violations of normality.

 
 
 
7.2 Results and discussion 
 
 

 The ANOVA shows a main effect between the three conditions [F(2,61) =11.31, 

MSE=  .059, p < .05]. The means of Isolated, Vector Sum and Predication algorithm are 

.16, .23 and .50 respectively. The Bonferroni correction shows that there are no 

significant differences between Isolated and Vector Sum, while there is a significant 

difference between Isolated and Predication Algorithm (P<.05) and between Vector 

Sum and Predication Algorithm (P<.05). Although it displays more variability, the fact 

that the Vector Sum condition shows no significant differences from the Isolated 

condition indicates that the Vector Sum method is not usually powerful enough to cope 

with the predominant meaning effect of T. In other words, when we calculate the 

structures T(C1) and T(C2) with Vector Sum, it may be that one of them is still 

dependent on the dominant meaning of T - the alternative meaning. The Predication 

Algorithm appears to be less biased by the dominant meaning of the terms, and the 

structures T(C1) and T(C2) are better represented. 
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       Figure 9. ANOVA of  the three conditions 
 
 
 
 

8. General discussion 

  

 In this study, we focus on polysemic words using a computational method (LSA) 

as a static base for word representation, and the predication algorithm as a filtering 

mechanism to disambiguate words with several meanings.  We have shown some 

methods to visually check the role of context during retrieval of the meanings of some 

terms. Although previous research has used larger units such as sentences or paragraphs 

to implement context (Lemaire et al., 2006; Olmos et al., 2009), we have chosen the 

context provided by another word.  This choice is a more parsimonious way of drawing 

on concepts without dispensing with the details of subtle changes.  In addition, we have 

predicted unwanted effects that may be observed and some proposals for avoiding them. 

In order to clarify the impact of each effect, we first drew a condition in which a word is 

used without any context words, to visualize the baseline for each polysemic word and 

its definition bias. We then tested each word followed by each of its context words, 

using two methods – first the simple vector sum, which did not eliminate definition 

biases, and second the predication algorithm, which proved an efficient method to avoid 
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some biases and to simulate comprehension of some predicative structures and term-

context structures (Kintsch, 2008).  

 

 Some interesting conclusions can be drawn from this study.  One is related to the 

representation of words independent of context (isolated condition) which may vary in 

terms of how closely it matches reality. It is occasionally biased by how representative 

the different meanings are within the semantic space. Sometimes, we find that only the 

most representative meaning for this corpus are present (predominant meaning 

inundation).  Sometimes there are several meanings surrounding the word but lacking 

detail (imprecise definition) – we see no more than general meanings of words, never 

sub-domains.  In other cases, the retrieved list of terms actually contains terms 

unconnected with any of the meanings e.g. “mocito” (youngster) in figure 5, perhaps 

due to the features of the vector in isolation from context. As explained in the 

introduction, the dimensions of an LSA vector-term (especially the vectors of polysemic 

words) are context-free and biased by the frequency with which a term occurs in the 

document, resulting in a vector-prototype that is a cluster of features of all meanings. 

This resulting vector-prototype used to establish similarity is in fact a very atypical 

member and can sometimes promote spurious relations. 

 

 Another conclusion is related to the representation of words dependent of 

context. In the case of Word/Context word, when we compound the vector with the 

simple sum of the word and the context word, we find that sometimes the dominant 

context has accounted for all the nodes (predominant meaning inundation).  This was 

probably caused by insufficient representation of one of the context words in the 

semantic space.  For instance, if the predominant meaning of a word is X and we add 

another context Y which does not have sufficient vector length to compete with the 

predominant meaning, then meaning Y will only result in a few terms and the 

representation of X will be strengthened.  This is why the meaning for the isolated word 

condition and the meaning for a word followed by two context words might not vary – 

as we observed for the word “partido”.  If we use the simple sum of vectors, we can see 

that the context “fútbol” (football) does not have sufficient vector length to retrieve 

more than a few examples.  In others cases (again with simple sum of vectors), the 

visual representation of two predications conserves other meaning that does not 

correspond to these contexts.  For example when we extract the graph for Planta(rosal) 
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and Planta(piso), using simple sum of vectors the energy-related meaning of “planta” is 

conserved in the shape of terms such as “químico” (chemical), “energía” (energy), 

“central” (power plant) and “electricidad” (electricity). We can briefly summarize the 

results of simple vector sum by saying that with this method we are exposed to the 

influence of words’ vector lengths. We can sometimes obtain reasonable representations 

but run the risk of obtaining only predominant or generic meanings. The fact that the 

ANOVA detected no significant differences between the Isolated and Vector Sum 

conditions in the second part of the article indicates that this affirmation may well be 

true. It also confirms what we had seen visually: those structures calculated using the 

Vector Sum method are still dependent on the dominant meaning of the terms. 

 

When we draw the Word/Context word structures with the predication algorithm, 

it seems we are able to correct these two problems. Content that does not match the 

arguments was eliminated, and all pertinent meaning was well represented.  This 

advantageous method for drawing contexts relies on the way in which the algorithm 

works.  It primes terms extracted using the word which are more relevant to the context 

words.  This method aims to ensure that the final product contains vectors representing 

the dimensions relevant to the word and to each retrieval context.  This provides a very 

detailed list of neighbors, representing ample examples of each argument which are well 

distributed around the network. The fact that the ANOVA detected significant 

differences between the Predication Algorithm and Vector Sum conditions in the second 

part of the article indicates that the Predication Algorithm is less biased by the dominant 

meanings, and operates more satisfactorily, as we had seen visually. 

 

Concerning results of the vector length correction applied in previous studies 

with a specific domain corpus (Jorge-Botana et al., 2009), we found that using a more 

general corpus such as LEXESP, this technique also helps to ensure that some frequent 

and important words are represented in the network. This is due to the actual correction 

mechanism used to extract part of the list of neighbors.  This mechanism gives the most 

representative terms from the semantic space priority as neighbors (although this 

priority is not mandatory).  This means that representative nodes as well as local 

relationships were represented visually, introducing some psychologically plausible 

representation.  Such frequent and important terms, however, do not necessarily form 

more links.  In fact the opposite is usually true: these frequent and important terms with 
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larger vectors do not usually occupy nodes with many links from other words.  We have 

concluded that this may be due to terms with larger vectors generally being more 

general terms and occurring in a variety of contexts. For this reason they do not have 

such a strong relationship with all the topic-related terms.  On the other hand, terms 

with shorter vectors often appear in a single context, making them unmistakable 

features of that topic.  

 

 

Conclusion 

 

 In general, what is remarkable about the LSA model is that the structural 

similarity of the resulting vectors appears to parallel semantic similarities discerned by 

human subjects between words in the corpus – sometimes with surprising accuracy. 

Semantic spaces formed using LSA have offered pleasing results in synonym 

recognition tasks (Landauer & Dumais, 1997; Turney, 2001), even simulating the 

pattern of errors found in these tests (Landauer & Dumais, 1997). Using LSA it has 

even been possible to study the rate of knowledge acquisition relating to a term, via 

exposure to documents in which it does not appear (Landauer & Dumais, 1997). Such 

correspondences would seem to suggest some non-arbitrary relationship between the 

representations computed by LSA-type methods and our own cognitive representations 

of word meaning. This ensures that LSA is a good basis for applying objective rules 

from some models of cognitive processes and extracting reliable results 

   

  Since Kintsch (2001) proposed a psychologically plausible way to simulate 

comprehension of predication – using LSA as a lexical base and applying objective 

cognitive rules to it – we have a very intuitive means for formal understanding of what 

the system does during comprehension of some linguistic structures, and the role of the 

context of word retrieval.  The predication algorithm applied to word pairs (Kintsch, 

2001) and the predication algorithm applied to dependency relations within sentences 

(Kintsch, 2008)  are effective methods for differentially retrieving the meaning of words 

according to the context imposed by arguments in propositions, and has proved better 

than the traditional method of using simple sum of the vectors representing argument 

and predicate.  
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 In this study, we have presented a protocol for visualizing the contexts that a 

word can take on, and have outlined the procedure to show the meanings of a word in 

isolation, the meanings of a word with arguments but without using the predication 

algorithm, and the meanings of a word with arguments using the predication algorithm.  

A well-managed context ensures good representation of the meanings we wish to 

retrieve, as shown intuitively by the visual nets, and rather more explicitly in the results 

of the ANOVA.   

 

This kind of human-based method could be used in retrieval applications or in 

indexing or tagging machines, or even in the application of top-down processing rules – 

for instance for improving confidence measures in speech recognition machines, 

constraining the likelihood of a recognized term using the context.  In addition, the nets 

produced by these methods could be used as a visual information retrieval interface 

(VIRI), allowing users to visually recognize the information that is needed, instead of 

writing a query in the search boxes or providing an overview of a semantic domain, and 

helping the user to know what information can be retrieved using the interface. 
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